В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Миша142546
Миша142546
29.12.2020 10:21 •  Математика

Теңдіктердің қайсысы пропорция болып табылады: 1)8÷2=0,4÷1
2)\frac{1}{4} = \frac{0.2}{0.8}
3)7÷0,1=21:0,3
4)



\frac{9}{2} = \frac{2.7}{0.6}
5)42 \div 6 = 1 \div \frac{1}{7}
6) \frac{5}{2} = \frac{0.5}{0.02}

Показать ответ
Ответ:
lyubimov20051
lyubimov20051
13.10.2021 06:50

SABCD -правильная четырехугольная пирамида. Постройте сечение пирамиды плоскостью, проходящей через DO (точка О-внутренняя точка отрезка SC) и перпендикулярной плоскости ABC.Если искомая площадь перпендикулярна плоскости АВС, то она перпендикулярна плоскости АВСD. Проведем диагональное сечение АSС пирамиды .О лежит на ребре SC и принадлежит этому диагональному сечению. Опустим  в  плоскости ∆ ASC из О перпендикуляр  ОН на АС (он  лежит в плоскости диагонального сечения, перпендикулярной основанию, параллелен высоте пирамиды, и потому перпендикулярен её основанию).  Через D и Н проведем прямую до пересечения с ВС в точке К. Соединим D, О и К. Через 3 точки можно провести плоскость, притом только одну. Плоскость ∆ DОК - сечение пирамиды. Если плоскость проходит через прямую перпендикулярную другой плоскости, то эти плоскости перпендикулярны.Плоскость ∆ DОК  проходит через ОН, перпендикулярный плоскости основания, и является искомым сечением 

0,0(0 оценок)
Ответ:
урсвт
урсвт
17.01.2020 21:00
Нет.

Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число.
Доказательство. Пусть число имеет вид \overline{\dots a_2a_1a_0}=10^0a_0+10^1a_1+10^2a_2+\dots. Рассмотрим разность между этим числом и суммой его цифр: 
\overline{\dots a_2a_1a_0}-(a_0+a_1+a_2+\dots)=(10^0-1)a_0+(10^1-1)a_1+\\+(10^2-1)a_2+\dots=9a_1+99a_2+999a_3+\dots
Коэффициент перед a_k равен 10^k-1 - k девяток, очевидно делится на 9. 
Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.

__________________________________________

Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и 2^n\cdot62^n \cdot 6 не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота