Студён Коледа сдаёт 6 экзаменов . Вероятность сдачи каждого экзамена равна 0,5 . Случайная величина Х- число сдавших экзаменов студентом . Постройте ряд распределения величины Х
1) f(x)=−2x³+xТочки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0: подставляем x = 0 в x - 2*x^3. Результат: f(0)=0Точка: (0, 0) График пересекает ось X, когда y равняется 0: подставляем 0 = x - 2x³ = x(1 - 2x²). Отсюда имеем 3 точки пересечения с осью Ох: х = 0, х = 1/√2 и х = -1/√2. f = -2*x^3 + xДля того, чтобы найти экстремумы, нужно решить уравнениеf'(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:f'(x)= −6x²+1=0Решаем это уравнение Корни этого уравнения x1=−1/√6x2=1/√6 Значит, экстремумы в точках: (-0.40825;-0.27217) (0.408248; 0.27217). Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: х = -0.5 -0.40825 -0.3 0.3 0.408248 0.5 y' =-6x^2+1 -0.5 0 0.46 0.46 0 -0.5. Где производная меняет знак с - на + это минимум, а где с + на - это максимум. Минимум функции в точке: x1=−1/√6.
Максимум функции в точке: x2=1/√6.
Убывает на промежутках [-sqrt(6)/6, sqrt(6)/6] Возрастает на промежутках (-oo, -sqrt(6)/6] U [sqrt(6)/6, oo)Найдем точки перегибов, для этого надо решить уравнение f''(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, f''(x)=−12x=0.Решаем это уравнение Корни этого уравнения x1=0Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках (-oo, 0] Выпуклая на промежутках [0, oo)Горизонтальные асимптотыГоризонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo limx→−∞(−2x3+x)=∞limx→−∞(−2x3+x)=∞ значит, горизонтальной асимптоты слева не существует limx→∞(−2x3+x)=−∞limx→∞(−2x3+x)=−∞ значит, горизонтальной асимптоты справа не существуетНаклонную асимптоту можно найти, подсчитав предел функции x - 2*x^3, делённой на x при x->+oo и x->-oo limx→−∞(1x(−2x3+x))=−∞limx→−∞(1x(−2x3+x))=−∞ значит, наклонной асимптоты слева не существует limx→∞(1x(−2x3+x))=−∞limx→∞(1x(−2x3+x))=−∞ значит, наклонной асимптоты справа не существуетЧётность и нечётность функции Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x - 2*x³ = -x + 2*x³ - Нет x - 2*x³ = -x - 2*x³ - Нет, значит, функция не является ни чётной, ни нечётной.
2)Решить систему уравнений: x+y-3z= -1 2x+2y-6z= -2 2x-3y+z=0 4x+4y-12z=-4 2x-3y+z=0 -2x+3y-z=0 4x+3y-2z=5 -4x-3y+ 2z =-5 4x+3y-2z=5 ------------------ --------------- ------------------ 5у -7z = -2 6x - z =5 y -10z =-9
5у -7z = -2 5у -7z = -2 6x=z+5 y = 10z -9 y -10z =-9 -5y+50z = 45 x=(1+5)/6 = 1. y= 10*1-9=1. ---------------- 43z = 43 z = 1. ответ: x = 1, y = 1, z = 1.
Найдите наибольшее и наименьшее значение функции а) f(x)= 3x^5-5x^3 на промежутке [-4;2] б) f(X)= 3+4( числитель) в знаменателе X, на промежутке [-1;1]
Находим значение функции на границах интервала f(-4)= 3(-4)^5-5(-4)^3 =-3072 + 320 = -2752 f(2)= 3(2)^5-5(2)^3 = 96 - 40 = 56
Следовательно наибольшее значение функция f(x)= 3x^5-5x^3 на промежутке [-4;2] имеет в точке х=2, f(2)= 56, а наименьшее в точке х=-4, f(-4)= -2752
ответ: fmin=-2756, fmax=56.
б) f(х)= (х+4)/х, на промежутке [-1;1]
f(х)= (х+4)/х =1+4/х
Находим производную функции f(x)= 1+4/х
f'(x)= (1+4/х)' = -4/x^2
Данная производная не имеет нулевых значение и терпит разрыв в точке х=0. Функция f(x)= 1+4/х в точке х=0 не существует и имеет разрыв второго рода.
Находим поведение этой функции при приближении к точке 0 справа и слева.
Значение функции на границах интервала равны f(-1) = 1 + 4/(-1) = -3 f(1) = 1+4\1 = 5 Следовательно не существует наибольшего и наименьшего значения функции на промежутке так как функция на данном интервале имеет точку разрыва второго рода.
подставляем x = 0 в x - 2*x^3.
Результат:
f(0)=0Точка:
(0, 0)
График пересекает ось X, когда y равняется 0:
подставляем 0 = x - 2x³ = x(1 - 2x²).
Отсюда имеем 3 точки пересечения с осью Ох:
х = 0, х = 1/√2 и х = -1/√2.
f = -2*x^3 + xДля того, чтобы найти экстремумы, нужно решить уравнениеf'(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:f'(x)= −6x²+1=0Решаем это уравнение
Корни этого уравнения
x1=−1/√6x2=1/√6
Значит, экстремумы в точках: (-0.40825;-0.27217)
(0.408248; 0.27217).
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
х = -0.5 -0.40825 -0.3 0.3 0.408248 0.5
y' =-6x^2+1 -0.5 0 0.46 0.46 0 -0.5.
Где производная меняет знак с - на + это минимум, а где с + на - это максимум.
Минимум функции в точке:
x1=−1/√6.
Максимум функции в точке:
x2=1/√6.
Убывает на промежутках [-sqrt(6)/6, sqrt(6)/6]
Возрастает на промежутках
(-oo, -sqrt(6)/6] U [sqrt(6)/6, oo)Найдем точки перегибов, для этого надо решить уравнение
f''(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
f''(x)=−12x=0.Решаем это уравнение
Корни этого уравнения
x1=0Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 0]
Выпуклая на промежутках
[0, oo)Горизонтальные асимптотыГоризонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo
limx→−∞(−2x3+x)=∞limx→−∞(−2x3+x)=∞
значит,
горизонтальной асимптоты слева не существует
limx→∞(−2x3+x)=−∞limx→∞(−2x3+x)=−∞
значит, горизонтальной асимптоты справа не существуетНаклонную асимптоту можно найти, подсчитав предел функции x - 2*x^3, делённой на x при x->+oo и x->-oo
limx→−∞(1x(−2x3+x))=−∞limx→−∞(1x(−2x3+x))=−∞
значит, наклонной асимптоты слева не существует
limx→∞(1x(−2x3+x))=−∞limx→∞(1x(−2x3+x))=−∞
значит, наклонной асимптоты справа не существуетЧётность и нечётность функции
Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x - 2*x³ = -x + 2*x³
- Нет
x - 2*x³ = -x - 2*x³
- Нет, значит, функция не является ни чётной, ни нечётной.
2)Решить систему уравнений:
x+y-3z= -1 2x+2y-6z= -2 2x-3y+z=0 4x+4y-12z=-4
2x-3y+z=0 -2x+3y-z=0 4x+3y-2z=5 -4x-3y+ 2z =-5
4x+3y-2z=5 ------------------ --------------- ------------------
5у -7z = -2 6x - z =5 y -10z =-9
5у -7z = -2 5у -7z = -2 6x=z+5 y = 10z -9
y -10z =-9 -5y+50z = 45 x=(1+5)/6 = 1. y= 10*1-9=1.
----------------
43z = 43
z = 1.
ответ: x = 1, y = 1, z = 1.
3)вычислить интеграл (5x^2-9)dx.
а) f(x)= 3x^5-5x^3 на промежутке [-4;2]
б) f(X)= 3+4( числитель) в знаменателе X, на промежутке [-1;1]
Решение:
а) f(x)= 3x^5-5x^3 на промежутке [-4;2]
Находим производную функции f(x)= 3x^5-5x^3
f'(x)= 5*3x^(5-1)-3*5x^(3-1) = 15x^4-15x^2 = 15x^2(x^2-1)= 15x^2(x-1)(x+1)
Находим критические точки решив уравнение f'(x) = 0
15x^2(x-1)(x+1) = 0
х = 0; х = 1; х = -1.
Находим значение функции в этих точках
f(-1)= 3(-1)^5-5(-1)^3 =-3 + 5= 2
f(0)= 3*0^5-5*0^3 = 0
f(1)= 3(1)^5-5(1)^3 = 3 - 5= -2
Находим значение функции на границах интервала
f(-4)= 3(-4)^5-5(-4)^3 =-3072 + 320 = -2752
f(2)= 3(2)^5-5(2)^3 = 96 - 40 = 56
Следовательно наибольшее значение функция f(x)= 3x^5-5x^3 на промежутке [-4;2]
имеет в точке х=2, f(2)= 56, а наименьшее в точке х=-4, f(-4)= -2752
ответ: fmin=-2756, fmax=56.
б) f(х)= (х+4)/х, на промежутке [-1;1]
f(х)= (х+4)/х =1+4/х
Находим производную функции f(x)= 1+4/х
f'(x)= (1+4/х)' = -4/x^2
Данная производная не имеет нулевых значение и терпит разрыв в точке х=0.
Функция f(x)= 1+4/х в точке х=0 не существует и имеет разрыв второго рода.
Находим поведение этой функции при приближении к точке 0 справа и слева.
Значение функции на границах интервала равны
f(-1) = 1 + 4/(-1) = -3
f(1) = 1+4\1 = 5
Следовательно не существует наибольшего и наименьшего значения функции на промежутке так как функция на данном интервале имеет точку разрыва второго рода.