Стрельба производится по пяти мишеням типа а ,трем типа ввероятность пападания в мишень типа а равна 0,4 ,типа в 0,2. сделан один выстрел в результате которого произошло попадание .найти вероятность того что поражена мишень а
Таким образом 2x²/3 должно раскладываться на произведение простых чисел, которые будут в кубе и наименьшими т.к. M - наименьшее, а значит и x,y - наименьшие.
2 уже есть, а "x" - натуральное, поэтому "х" должно быть произведением какого-то числа и 2 т.к. 2·2²=2³, да можно было x=2⁴, тогда 2·2⁸=2⁹, но нас интересует наименьшее. Так же нам надо избавиться от 3 в знаменателе, поэтому "х" должно быть произведением какого-то числа на 3ⁿ, при этом n - наименьшее, значит n=2 т.к. (3²)²:3=3³
Получается x=2·3² и подкоренное выражение 2³·3³, значит "у" будет натуральным.
Чтобы "у" был натуральным числом, надо чтобы
Таким образом 2x²/3 должно раскладываться на произведение простых чисел, которые будут в кубе и наименьшими т.к. M - наименьшее, а значит и x,y - наименьшие.
2 уже есть, а "x" - натуральное, поэтому "х" должно быть произведением какого-то числа и 2 т.к. 2·2²=2³, да можно было x=2⁴, тогда 2·2⁸=2⁹, но нас интересует наименьшее. Так же нам надо избавиться от 3 в знаменателе, поэтому "х" должно быть произведением какого-то числа на 3ⁿ, при этом n - наименьшее, значит n=2 т.к. (3²)²:3=3³
Получается x=2·3² и подкоренное выражение 2³·3³, значит "у" будет натуральным.
На всякий случай проверим и найдём M.
Пошаговое объяснение:
ответ:Первая задача решается по формуле Байеса
0.2*0.85/(0.3*0.8+0.5*0.9+0.2*0.85) - искомая вероятность
Вторая задача - по формуле полной вероятности
0.3*0.4+0.5*0.3+0.2*0.2 - искомая вероятность
2)Решение.
a) Вероятность, что первый шар белый Р=5/9
Осталось 4 белых, всего 8 шаров, вероятность вытащить второй белый = 4/8=1/2
Р=5/9*1/2 = 5/18 =0,28
б) Р=4/9 * 3/8 = 1/6
в) Вероятность, что первый черный, а второй белый Р=4/9 * 5/8 = 5/18
Вероятность, что первый белый, а второй черный Р=5/9 * 4/8 = 5/18
Окончательно, вероятность, что 1 белый и один черный Р=5/18 + 5/18 = 10/18 = 5/9
3)Найдите вероятность наступления ровно 3 успехов в 8 испытаниях Бернулли с вероятностью успеха p =1/2
Решение. Вероятность успеха =1/2, а вероятность не успеха равна 1-1/2=1/2.
Р8(3) = С83*(1/2)3*(1/2)5 = 8!/(3!*5!) * (1/2)8 = 8*7/256 = 7/32 ≈0,219
Пошаговое объяснение:100%правильно лайк поставьте а то жаловатся буду