Сторона основания правильной четырёхугольной призмы равна а, а диагональ призмы образует с плоскостью основания угол 45º. Найти:
а) диагональ призмы;
б) площадь сечения призмы плоскостью, проходящей через сторону нижнего основания и противоположную сторону верхнего основания.
2) Основанием прямой призмы является прямоугольный треугольник, гипотенуза которого равна т, а острый угол равен 60º. Через катет, противолежащий этому углу, и противоположную этому катету вершину другого основания проведено сечение, составляющее 45º с плоскостью основания. Доказать, что ∆А1СД прямоугольный. Вычислить площадь основания призмы, высоту призмы.
3) Диагональ правильной четырёхугольной призмы равна а и образует с плоскостью основания угол
в 30º. Найти: а) сторону основания призмы, б) площадь сечения призмы плоскостью, проходящей через диагонали основания призмы.
4) Сторона основания правильной треугольной призмы равна а, высота призмы равна 1,5 а. Через сторону основания и противоположную вершину другого основания проведено сечение. Найти:
а) высоту основания призмы;
б) угол между плоскостями основания и сечения призмы.
ответ:0,94.
Стрелок ведет огонь по цели, движущейся на него. Вероятность попадания в цель при первом выстреле равна 0,4 и увеличивается на 0,1 при каждом последующем выстреле. Какова вероятность получить два попадания при трех независимых выстрелах?
ответ: 0,38.
Из двух полных наборов шахмат наудачу извлекают по одной фигуре. Какова вероятность того, что обе фигуры окажутся слонами?
ответ: 1/64.
Из группы, состоящей из четырех юношей возраста 17, 18, 19 и 20 лет и четырех девушек тех же лет, наугад выбирают двух человек. Какова вероятность того, что:
а) оба выбранных окажутся юношами;
б) оба окажутся юношами, если известно, что один из выбранных юноша;
в) оба окажутся юношами, если известно, что один из них юноша, которому не более 18 лет;
г) оба окажутся юношами, если известно, что один из них юноша 17 лет?
ответ: 3/14, 3/11, 5/13, 3/7.
В одной студенческой группе обучаются 24 студента, во второй – 36 студентов и в третьей – 40 студентов. По математическому анализу получили отличные отметки 6 студентов первой группы, 6 студентов второй группы и 4 студента третьей группы. Наугад выбранный студент оказался получившим по математическому анализу отметку «отлично». Какова вероятность того, что он учится в первой группе?
ответ: 0,375.
Преподаватель экзаменует незнакомую ему группу по экзаменационным билетам, содержащим по три вопроса. Он знает, что в предыдущую сессию в этой группе было 27 успевающих студентов, из них шесть отличников, и трое неуспевающих студентов, и считает, что отличники а) А – дубль, В – на одной из половин кости 6 очков;
б) А – дубль, В – сумма очков нечетна;
в) А – на одной из половин кости «пустышка», В – сумма очков больше шести;
г) А – сумма очков больше четырех, В – сумма очков нечетна.