Дано уравнение параболы y² - 4y + 8x - 12 = 0.
Выделим полный квадрат для у, а х перенесём вправо.
(y² - 4y + 4) - 4 + 8x - 12 = 0.
(y² - 4y + 4) = -8x + 16.
(y - 2)² = -2*4(x - 2).
Получили уравнение параболы, в котором видно:
- ветви направлены влево, ось параллельна оси Ох проходит по прямой у = 2.
- вершина в точке (2; 2),
- фокальный параметр р = 4.
Уравнение директрисы: х = хо + (р/2) = 2 + 2 = 4.
Дано уравнение параболы y² - 4y + 8x - 12 = 0.
Выделим полный квадрат для у, а х перенесём вправо.
(y² - 4y + 4) - 4 + 8x - 12 = 0.
(y² - 4y + 4) = -8x + 16.
(y - 2)² = -2*4(x - 2).
Получили уравнение параболы, в котором видно:
- ветви направлены влево, ось параллельна оси Ох проходит по прямой у = 2.
- вершина в точке (2; 2),
- фокальный параметр р = 4.
Уравнение директрисы: х = хо + (р/2) = 2 + 2 = 4.