Переобозначим начальный момент времени с 12 часов на 0 минут. Опишем функцию зависимости количества бактерий от времени: f(0) = 1000 f(15) = f(0) * 2 f(30) = f(0) * 2^2
f(15*t) = f(0) * 2^t Найдем целый момент времени 15*t, при котором f(15*t) будет больше 10000000. f(0) * 2^t > 10000000 1000 * 2^t > 10000000 2^t > 10000 2^t > 10000 > 2^13, поэтому t = 14 И момент времени равен 15*14 минут = 210 минут Так как начинали с 0 минут, то время размножения бактерий равно 210 минут. ответ: 210 минут.
f(0) = 1000
f(15) = f(0) * 2
f(30) = f(0) * 2^2
f(15*t) = f(0) * 2^t
Найдем целый момент времени 15*t, при котором f(15*t) будет больше 10000000.
f(0) * 2^t > 10000000
1000 * 2^t > 10000000
2^t > 10000
2^t > 10000 > 2^13, поэтому t = 14
И момент времени равен 15*14 минут = 210 минут
Так как начинали с 0 минут, то время размножения бактерий равно 210 минут.
ответ: 210 минут.
Задать вопрос
Войти
banner background
АнонимМатематика21 сентября 15:24
Решите уравнение cos^2x + sin2x=0
ответ или решение1
Бирюкова Елена
По формуле тригонометрии sin 2x = 2 sin x * cos x, поэтому проведем следующее преобразование исходного уравнения cos^2 x + sin 2x = 0:
cos^2 x + sin 2x = 0;
cos^2 x + 2 sin x * cos x = 0;
Вынесем общий множитель за скобки:
cos x(cos x +2 sin x) = 0;
Уравнение имеет два решения:
cos x = 0 и cos x +2 sin x = 0;
Решив первое уравнение получим:
x = 3п/2 + 2п*n, где п - число Пи, равное 3.14;
Решим второе уравнение:
cos x + 2 sin x = 0;
cosx = - 2 sinx;
ctg x = - 2;
x= arc ctg (-2) + п * n;
ответ: x = 3п/2 + 2п*n; x = arc ctg (-2) + п * n;