Однажды Василисе Дмитриевне задали в школе придумать сказочную историю о диком или домашнем животном. И вот что получилось Василиса продолжает свои литературные изыскания. На сей раз в школьной тетради по окружающему миру (2 класс). Я, прочитав этот текст, как-то очень мрачно грузанулся: Жил-был мальчик, и была у него семья, а звали его Костик. Один раз мама попросила Костика с младшим братишкой погулять, когда её дома не будет. Ушла мама, а Костик братику и говорит: иди сам погуляй. Братик послушался его и пошел гулять, а Костик на печке и заснул. Пришла мама и спрашивает: а где твой братик? Костик: а он гуляет. Испугалась мама, побежала сына искать, но не нашла. Заснули все, а Костику сон приснился, что он коровой стал. Проснулся, а он поправде коровой стал. Вот так бывает, если за младшими братьями не следишь. Возможно, с годами вся лирика выветрится, останется только чистый кафка: Костику сон приснился, что он коровой стал. Проснулся, а поправде он коровой стал.
Даны вершины пирамиды А(3,-5,5), В(-5,1,0), С(3,0,5), D(1,-1,4).
1) Находим векторы ВА и ВС.
ВА = (3+5=8; -5-1=-6; 5-0=5) = (8; -6; 5).
Модуль равен √(64+36+25) = √125 = 5√5.
ВС = (3+5=8;0-1=-1; 5-0=5) = (8; -1; 5).
Модуль равен √(64+1+25) = √90 = 3√10.
cos B = (8*8+(-1)*(-6)+5*5)/(5√5*3√10) = 95/(75√2) = 19√2/30 ≈ 0,896.
∠B = arc cos 0,896 = 0,46086 радиан = 26,406 градуса.
2) Площадь треугольника ABС равна половине модуля векторного произведения ВА(8; -6; 5) на ВС(8; -1; 5).
Применим треугольную схему.
i j k | i j
8 -6 5 | 8 -6
8 -1 5 | 8 -1 =
= -30i + 40j - 8k - 40j + 5i + 48k = -25i + 0j + 40k = (-25; 0; 40).
Модуль равен √(625 + 0 + 1600) = √2225 = 5√89.
Площадь АВС равна (1/2)*5√89 = 5√89/2 ≈ 23,585 кв.ед.
3) Объём пирамиды равен (1/6) смешанного произведения (ВАхВС)*BD.
Находим вектор BD: В(-5,1,0), D(1,-1,4) = (1+5=6; -1-1=-2; 4-0=4) = (6; -2; 4).
BAxBC = (-25; 0; 40)
V = (1/6)*(-150+0+160) = 10/6 = 5/3 ≈ 1,67 куб.ед.
Пошаговое объяснение: