Может, это НОД - наибольший общий делитель? Если это так, то: НОД(10 ; 5 ; 30) НОД трех чисел 10, 15 и 30 — это наибольшее число, на которое все три данных числа 10, 15 и 30 делятся без остатка. Ищем НОД. Разложим на простые множители данные числа: 10 = 2 • 5 15 = 3 • 5 30 = 2 • 3 • 5 Выбираем одинаковые простые сомножители во всех трех числах. Это одно единственное число 5. В случае, когда одинаковых для всех данных чисел сомножителей несколько, то их нужно перемножить. На в этой задаче только один одинаковый для всех данных чисел сомножитель - это 5. Значит, ответ: НОД (10 ; 15 ; 30) = 5
1. найдем производную. 6х²-12х-18=6*(х²-2х-3), найдем критические точки. 6*(х²-2х-3)=0, по Виету х=-1; х=3
-13
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [3;+∞), и убывает при х∈ [-1;3]
2 производная равна 6х²-6х-12=0; 6(х²-х-2)=0; по Виету х=2; х=-1
-12
+ - +
функция возрастает при х∈(-∞;-1] и при х∈ [2;+∞), и убывает при х∈ [-1;2]
3.производная равна -4/х²+2/х³=(2-4х)/х³; х=0; х=0.5
00.5
- + -
х=0.5- точка максимума, максимум равен 4/(1/2)-1/(1/2)²=8-4=4
4. производная равна -10/х²+14/х³=0, 14-10х=0; х=1.4
01.4
- + -
х=х=1.4- точка максимума, максимум равен 10/(1.4)-1/(1.4)²=1300/196=
315/49
Если это так, то:
НОД(10 ; 5 ; 30)
НОД трех чисел 10, 15 и 30 — это наибольшее число, на которое все три данных числа 10, 15 и 30 делятся без остатка.
Ищем НОД.
Разложим на простые множители данные числа:
10 = 2 • 5
15 = 3 • 5
30 = 2 • 3 • 5
Выбираем одинаковые простые сомножители во всех трех числах.
Это одно единственное число 5.
В случае, когда одинаковых для всех данных чисел сомножителей несколько, то их нужно перемножить.
На в этой задаче только один одинаковый для всех данных чисел сомножитель - это 5.
Значит, ответ:
НОД (10 ; 15 ; 30) = 5