Слово составлено из карточек, на каждой из которых написана одна буква. Карточки смешивают и вынимают без возврата по одной. Найти вероятность того, что карточки с буквами вынимаются в порядке следования букв заданного слова: а) «событие»; б) «статистика».
Дано: m n = M
Отметим на прямой m произвольную точку N, отличную от М.
Рассмотрим плоскость =(n, N). Так как M и N, то по А-2 m . Значит обе прямые m, n лежат в плоскости и следовательно , является искомой
Докажем единственность плоскости . Допустим, что есть другая, отличная от плоскости и проходящая через прямые m и n, плоскость .
Так как плоскость проходит через прямую n и не принадлежащую ей точку N, то по T-1 она совпадает с плоскостью . Единственность плоскости доказана.
Теорема доказана
1 скатерть = 4 салфетки,обозначим это а₁=4,
Каждый следующий козлёнок брал 1 салфетку,а возвращал в сундук 4,
4-1=3 -то есть прибавлял 3 салфетки в сундук,на одну меньше,чем первый козлёнок,обозначим это а₂=а₁-1=3,
Все следующие козлята,а их было 6-ть, так же брали 1 салфетку,а возвращали 4,то есть шестеро козлят добавили по 3 салфетки каждый,отсюда получаем
а₂ * 6 = 3 * 6=18 -обозначим это d=а₂* 6,
Составим выражение,где а₇ -это общее количество получившихся салфеток:
а₇=а₁+ d =а₁+а₂ * 6=4 + 3*6=4+18 = 22-салфетки,
ответ: у семерых козлят и мамы-козы теперь есть 22 салфетки.