В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
2254wearвика
2254wearвика
23.01.2022 15:52 •  Математика

Сколько существует таких натуральных чисел n, что среди чисел от 1 до n ровно 30% делятся на 3?

Показать ответ
Ответ:
khfozilzhonov
khfozilzhonov
05.10.2020 22:56
По условию, среди чисел от 1 до N ровно 3/10 делятся на 3 и ровно 7/10 не делятся на 3. Отсюда следует, что N делится на 10. Заметим, что числа N=10 и N=20 подходят, в первом случае на 3 делится 3 числа, во втором 6 чисел, 3/10=6/20=30%. Число 30 уже не подходит, так как 10/30=1/3>30%. Покажем, что любое N>30 также не подойдет. Поскольку N делится на 10, это число можно представить в виде 10k, где k>3 – натуральное число. Ясно, что чисел, меньших N и кратных 3, заведомо не меньше 3k, поскольку в любом десятке (от 1 до 10, от 11 до 20, и так далее, от N-9 до N) есть минимум три числа, делящихся на 3. С другой стороны, в десятке от 20 до 30 таких чисел уже 4 (21, 24, 27, 30), поэтому всего чисел от 1 до N, кратных 3, не меньше 3k+1. Поскольку (3k+1)/10k=3k/10k+1/10k=3/10+1/10k>30%, любое число N>30 нам не подойдет. Следовательно, существует всего 2 подходящих числа – 10 и 20.

ответ: 2 числа.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота