сколько существует 2015-значных чисел таких, что при вычёркивании его любой одной цифры получается 2014-значное число, и это 2014-значное число является делителем исходного числа (напомним, что многозначное число не может начинаться с нуля и что на ноль ничего не делится, кроме, быть может, нуля)?
Из этого получаем, что все числа, у которых есть шанс оказаться хорошими, имеют вид ab0000...0, причем a, b — не нули. Вычёркивание нулей удовлетворяет условию, проверяем вычёркивание a и b.
Вычеркивание a: ab0000...0 делится на a0000...0, значит, 10a + b делится на a, откуда b делится на a.
Вычёркивание b: ab0000...0 делится на b0000...0, значит, 10a + b делится на b, откуда 10a делится на b.
b делится на a: обозначим b = ka, k — натуральное, не большее 9.
10a делится на b, значит, 10a делится на ka, k — делитель 10. Остаются варианты k = 1, 2 или 5.
k = 1: a = b, 9 вариантов (11... - 99...)
k = 2: b = 2a, 4 варианта (12..., 24..., 36..., 48)
k = 5: b = 5a, 1 вариант (15...)
Всего 9 + 4 + 1 = 14 чисел.