Треугольник MPK равнобедренный, P = 90°. Значит, углы M и K равны 45°. NT - расстояние от точки N до гипотенузы MK. Так как PN ⊥ MPK, T - середина MK. Из треугольника MPK по т.Пифагора MK = √(MP²+PK²) = √(100+100) = √(200) = 2√(50) Так как T - середина MK, MT = TK = √(50) Рассмотрим треугольник MPT. Угол M = 45° по условию. Угол MPT = половине угла MPK, т.к. PT - высота и биссектриса треугольника MPK ∠MPT = 90°:2 = 45° Треугольник MPT - равнобедренный, MT = PT = √(50) Тогда из треугольника NPT по т.Пифагора NT = √(PN²+PT²) = √(31+50) = √(81) = 9 см.
Линейной функции называется функция вида f ( x ) = k x + b , где и — произвольные действительные числа. Графиком такой функции (то есть множеством точек, удовлетворяющим равенству y = k x + b ) является прямая. Число называется угловым коэффициентом и отвечает за угол наклона прямой.
Пример- Чтобы построить ее график, нужно вычислить координаты любых двух точек. То есть нужно взять любые два значения аргумента x и вычислить соответствующие два значения функции. Затем для каждой пары ( x ; y ) \left( x;y \right) (x;y) найдем точку в системе координат, и проведем прямую через эти две точки.
NT - расстояние от точки N до гипотенузы MK. Так как PN ⊥ MPK, T - середина MK.
Из треугольника MPK по т.Пифагора
MK = √(MP²+PK²) = √(100+100) = √(200) = 2√(50)
Так как T - середина MK,
MT = TK = √(50)
Рассмотрим треугольник MPT. Угол M = 45° по условию. Угол MPT = половине угла MPK, т.к. PT - высота и биссектриса треугольника MPK
∠MPT = 90°:2 = 45°
Треугольник MPT - равнобедренный, MT = PT = √(50)
Тогда из треугольника NPT по т.Пифагора
NT = √(PN²+PT²) = √(31+50) = √(81) = 9 см.
Пример- Чтобы построить ее график, нужно вычислить координаты любых двух точек. То есть нужно взять любые два значения аргумента x и вычислить соответствующие два значения функции. Затем для каждой пары ( x ; y ) \left( x;y \right) (x;y) найдем точку в системе координат, и проведем прямую через эти две точки.