Разложим 36 на множители: 36 = 9 * 4.
Искомое число должно делиться на 9 и на 4.
Если в записи десятизначного числа встречаются все десять цифр, то сумма его цифр 0 + 1 + 2 + 3 + ... + 9 = (1 + 9) * 9 / 2 = 45.
Следовательно, сумма цифр такого числа делится 9 и по признаку делимости на 9 это число делится на 9.
По признаку делимости на 4 последние две цифры числа должны представлять двузначное число, делящееся на 4.
Максимальное двузначное число делящееся на 4 - 96.
Для того, чтобы указать минимальное 10-тизначное число, мы должны искать числа с наименьшими старшими разрядами.
Поэтому искомое число:
1023457896 и последние три его цифры 896.
Разложим 36 на множители: 36 = 9 * 4.
Искомое число должно делиться на 9 и на 4.
Если в записи десятизначного числа встречаются все десять цифр, то сумма его цифр 0 + 1 + 2 + 3 + ... + 9 = (1 + 9) * 9 / 2 = 45.
Следовательно, сумма цифр такого числа делится 9 и по признаку делимости на 9 это число делится на 9.
По признаку делимости на 4 последние две цифры числа должны представлять двузначное число, делящееся на 4.
Максимальное двузначное число делящееся на 4 - 96.
Для того, чтобы указать минимальное 10-тизначное число, мы должны искать числа с наименьшими старшими разрядами.
Поэтому искомое число:
1023457896 и последние три его цифры 896.
НОК(a; b) = a•b/НОД(a; b) = a•b/n.
Рассмотрим числа c = a/n и d = b/n. Тогда c и d взаимно простые числа. Поэтому HOД(c; d) = 1 и НОК(c; d) = c•d.
Далее, так как a = c•n и b = d•n, то
6•(a+b) = 6•(c•n+d•n) = 6•n•(c+d) и НОД(a; b)+НОК(a; b) = n + a•b/n.
Отсюда
6•n•(c+d) = n + a•b/n или
6•(c+d) = 1 + a•b/n² = 1 + (a/n)•(b/n) = 1 + c•d = HOД(c; d) + НОК(c; d), то есть
6•(c+d) = HOД(c; d) + НОК(c; d).
Так как c ≤ a и d ≤ b, то последнее равенство означает, что наименьшее значение a•b следует искать среди чисел, для которых HOД(a; b) = 1.
Найдём целочисленные решения уравнения
6•(c+d) = 1 + c•d.
6•(c+d) = 1 + c•d ⇔ 6•c–c•d = 1–6•d ⇔ c•(6–d) = 1–6•d ⇔
⇔ c = (1–6•d)/(6–d) = (6•d–1)/(d–6) = (6•d–36+35)/(d–6) = 6+35/(d–6).
Значит, 35 делится на d–6, поэтому
d = 7 или 11 или 13 или 41.
Отсюда
c = 41 или 13 или 11 или 7.
Тогда получим следующие пары:
(7; 41), (11; 13), (13; 11), (41; 7).
Так как 7•41 = 287 и 11•13 = 143, то наименьшее произведение равно 143