Построим высоту АН к стороне ВС. в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН. известно, что АВ = 10, пусть АН = ВН = х, тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный. угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов. пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы). по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3 АС=2*5 корней из 2/3= 10 корней из 2/3
1) 24 : 3 = 8 (км/ч) - скорость лыжника.
ответ: 8 км/ч.
2) 80 · 4 = 320 (км) проехал мотоциклист.
ответ: 320 км.
3) 28 : 7 = 4 (ч) - была в пути лодка.
ответ: 4 ч.
4) 12 : 4 = 3 (м/с) - скорость мышки.
ответ: 3 м/с.
5) 15 : 5 = 3 (ч) - пройдет пешеход.
ответ: за 3 ч.
6) 33 : 3 = 11 (км/ч) - скорость велосипедиста.
ответ: 11 км/ч.
Формула s = v · t (s - путь, v - скорость, t - время) подходит для задачи 2.
Формула t = s / v (s - путь, v - скорость, t - время) подходит для задач 3 и 5.
Формула v = s / t (s - путь, v - скорость, t - время) подходит для задач 1, 4 и 6.
в прямоугольном треугольнике АВН угол В = 45 градусов (по условию), тогда угол ВАН = 90 - 45 = 45 градусов => треугольник равнобедренный, ВН = АН.
известно, что АВ = 10, пусть АН = ВН = х,
тогда по теореме Пифагора 100 = х^2 + x^2; 100 = 2x^2; x^2 = 50; х = корень из 50;
треугольник АНС - прямоугольный.
угол С = 60 градусов (по условию), тогда угол НАС = 90 - 60 = 30 градусов.
пусть АС = 2х, тогда СН = х (так как катет, лежащий против угла, равного 30 градусов, равен 1/2 гипотенузы).
по теореме Пифагора 4х^2 = 50 + х^2; 3х^2 = 50; х^2 = 50/3; х = 5 корней из 2/3
АС=2*5 корней из 2/3= 10 корней из 2/3