log₃(4-3x)=2
4-3x=3²
4-3x=9
3x=-5 |÷3
x=-5/3.
sin(3x)=1
3x=π/2+2πn |÷3
x=π/6+2πn/3.
x²-2x≤3
x²-2x-3≤0
x²-2x-3=0 D=16 √D=4
x₁=3 x₂=-1 ⇒
(x-3)(x+1)≤0
-∞+-1-3++∞
x∈[-1;3].
(2x-1)/(x+1)≥4 ОДЗ: x+1≠0 x≠-1
(2x-1)/(x+1)-4≥0
(2x-1-4*(x+1)/(x+1)≥0
(2x-1-4x-4)/(x+1)≥0
((-2x-5)/(x+1)≥0
-(2x+5)/(x+1)≥0 |×(-1)
(2x+5)/(x+1)≤0
-∞+-2,5--1++∞
x∈[-2,5;-1).
3⁵ˣ⁻²,⁵≥√3
3⁵ˣ⁻²,⁵≥3¹/² ⇒
5x-2,5=1/2
5x-2,5=0,5
5x=3 |÷5
x=0,6.
log₃(4-3x)=2
4-3x=3²
4-3x=9
3x=-5 |÷3
x=-5/3.
sin(3x)=1
3x=π/2+2πn |÷3
x=π/6+2πn/3.
x²-2x≤3
x²-2x-3≤0
x²-2x-3=0 D=16 √D=4
x₁=3 x₂=-1 ⇒
(x-3)(x+1)≤0
-∞+-1-3++∞
x∈[-1;3].
(2x-1)/(x+1)≥4 ОДЗ: x+1≠0 x≠-1
(2x-1)/(x+1)-4≥0
(2x-1-4*(x+1)/(x+1)≥0
(2x-1-4x-4)/(x+1)≥0
((-2x-5)/(x+1)≥0
-(2x+5)/(x+1)≥0 |×(-1)
(2x+5)/(x+1)≤0
-∞+-2,5--1++∞
x∈[-2,5;-1).
3⁵ˣ⁻²,⁵≥√3
3⁵ˣ⁻²,⁵≥3¹/² ⇒
5x-2,5=1/2
5x-2,5=0,5
5x=3 |÷5
x=0,6.