1)Да. Четыри прямых, две из которых проходят через диагонали квадрата, а другие две через середины противоположных сторон. Ето легко показать если взять квадратный лист бумаги и сложить пополам и розложыть - тогда линия сгина и будет частю (сгин конечен, а прямая - нет) оси симетрии. А таких разных складываний есть 4. 2)Нет. Треугол. бывают с прямым углом - прямоуголные. есть такая теорема:сума углов треугольника равна 180 гр., а так как 90 менше 180, то на остальные 2 угла остается еще 90 гр. то есть существуют треугольники с углом 90гр. 3)Да. Пускай m:n=m*(1/n) операцию деления поменяем умножением. Уменшим делимое и повтори замену операций (m:2):n=(m*1/2)*1/n=. А теперь скобки можна опустить так как неважно в каком порядке перемножать - результат тот же. =m*1/n*1/2, а m*1/n есть частное которое умн. на 1/2 и будет в два раза менше. Например: 12:3=4. 12:2:3=2 4)Нет. Пускай сторона квадрата 2а, тогда его площа S=(2a)^2=4a^2. Уменшим сторону в двое- получим квадрат с стороной а и площей S1=a^2 и видим что его площа в 4 раза менше, а не в два.
Это число 1143. Как нетрудно проверить, среди сумм подряд идущих цифр есть 1, 2=1+1, 3, 4, 5=1+4, 6=1+1+4, 7=4+3, 8=1+4+3, 9=1+1+4+3.
Трехзначным или меньше это число быть не может, т.к. у 3-значного числа может быть не более 3+2+1=6 различных сумм подряд идущих цифр. Дальше, т.к. сумма всех цифр должна быть не меньше 9, то имея первые две единицы, получается, что сумма 3-ей и 4-ой цифры должна быть не меньше 7. С другой стороны, чтобы среди суммы цифр была 3, надо среди цифр иметь либо 1, либо 2, либо 3. Легко проверяется, что 111а, 11а1, где a≥6, 112b, 11b2, где b≥5 не подходят. Значит остаются варианты, либо 113а, либо 11а3, c a≥4. При a=4 видим, что подходит 1143.
2)Нет. Треугол. бывают с прямым углом - прямоуголные. есть такая теорема:сума углов треугольника равна 180 гр., а так как 90 менше 180, то на остальные 2 угла остается еще 90 гр. то есть существуют треугольники с углом 90гр.
3)Да. Пускай m:n=m*(1/n) операцию деления поменяем умножением. Уменшим делимое и повтори замену операций (m:2):n=(m*1/2)*1/n=. А теперь скобки можна опустить так как неважно в каком порядке перемножать - результат тот же. =m*1/n*1/2, а m*1/n есть частное которое умн. на 1/2 и будет в два раза менше.
Например: 12:3=4. 12:2:3=2
4)Нет. Пускай сторона квадрата 2а, тогда его площа S=(2a)^2=4a^2. Уменшим сторону в двое- получим квадрат с стороной а и площей S1=a^2 и видим что его площа в 4 раза менше, а не в два.
Как нетрудно проверить, среди сумм подряд идущих цифр есть
1, 2=1+1, 3, 4, 5=1+4, 6=1+1+4, 7=4+3, 8=1+4+3, 9=1+1+4+3.
Трехзначным или меньше это число быть не может, т.к. у 3-значного числа может быть не более 3+2+1=6 различных сумм подряд идущих цифр. Дальше, т.к. сумма всех цифр должна быть не меньше 9, то имея первые две единицы, получается, что сумма 3-ей и 4-ой цифры должна быть не меньше 7. С другой стороны, чтобы среди суммы цифр была 3, надо среди цифр иметь либо 1, либо 2, либо 3. Легко проверяется, что 111а, 11а1, где a≥6, 112b, 11b2, где b≥5 не подходят. Значит остаются варианты, либо 113а, либо 11а3, c a≥4. При a=4 видим, что подходит 1143.