В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
LeviAckerman13
LeviAckerman13
09.02.2022 22:23 •  Математика

Решите задачу и запишите ответ. Сколько и какие цифры можно использовать в записи чисел:
1) в пятиричной системе счисления; 2) в троичной системе счисления.
Переведите одно из чисел пятиричной системы в десятичную.

Показать ответ
Ответ:
assel00031
assel00031
25.06.2022 11:34
Метод Лагранжа для линейных уравнения состоит из двух шагов

1) Убираем неоднородную часть, и решаем однородное уравнение. Т.к. уравнение второго порядка, мы должны получить два независимых решения.

y''  + 16y = 0
Решение однородного уравнения ищем в виде:
y = exp(kx), тогда y'' = k^2 exp(kx). Подставим в уравнение:
k^2 exp(kx) + 16 exp(kx) = 0
( k^2 + 16 ) exp(kx) = 0
exp(kx) не равна нулю, разделим на нее:
k^2 = - 16
k = (+/-)4i
То есть получили два независимых решения однородного уравнения.
y(x) = C1 exp(4ix) + C2 exp(-4ix)
Два независимых решения с двумя неопределенными константами. 
Перейдем к другим независимым решениям и константам (расписывая экспоненту exp(ix) = cos(x) + i sin(x)):
yo = C1 exp(4ix) + C2 exp(-4ix) = [C1+C2]cos(4x) + i[C1-C2]sin(4x) 
C1+C2 = A  и i[C1+C2] = B - новые независимые константы
(на самом деле к новым функциям и константам переходить не обязательно. Просто синусы и косинусы сразу реальные, а от мнимых экспонент не всегда потом легко избавиться)

yo(x) = A y1(x) + B y2(x) - решение однородного уравнения.
y1(x) = cos(4x), y2(x) = sin(4x) - независимые решения

2) Дальше воспользуемся методом Лагранжа (метод вариации постоянных)
Решение исходного уравнения будем искать в виде:
y(x) = A(x) y1(x) + B(x) y2(x)
A, B - функции, которые надо найти, решив систему:
A'(x) y1(x) + B'(x) y2(x) = 0
A'(x) y1'(x) + B'(x) y2'(x) = 2sin(4x)
для производных A' и B' получили систему двух уравнений и двух неизвестных. От сюда легко найти A'(x) и B'(x)
Затем интегрируем (не забываем константы интегрирования), и получаем искомые функции и конечный ответ. Удачи вам :)
0,0(0 оценок)
Ответ:
ддииммоонн
ддииммоонн
09.10.2020 23:12
Вероятность того, что все 10 машин
будут в рабочем состоянии составляет:

P_{10} = 0.9^{10} \ ;

Вероятность того, что 9 машин будут в рабочем состоянии,
а одна – в ремонте, составляет:

P_9 = 10 \cdot 0.1 \cdot 0.9^9 = 0.9^9 \ ,
поскольку равновероятно в ремонте может оказаться первая машина, вторая машина, третья машина и т.д. до десятой.

Вероятность того, что 8 машин будут в рабочем состоянии,
а две – в ремонте, составляет:

P_8 = C_{10}^2 \cdot 0.1^2 \cdot 0.9^8 = 0.45 \cdot 0.9^8 \ ,
поскольку пара (из 10), оказавшаяся в ремонте может быть
составлена 45-тью C_{10}^2 = \frac{ 10 \cdot 9 }{2} \ .

Все эти вероятности описывают допустимые ситуации.
Искомая вероятность представляется их суммой:

P = P_{10} + P_9 + P_8 = 0.9^{10} + 0.9^9 + 0.45 \cdot 0.9^8 = \\\\ = 0.9^8 ( 0.9^2 + 0.9 + 0.45 ) = 0.81^4 \cdot 2.16 \ = 0.9298091736 \ ;

ответ:    P = 0.9298091736 \ ;
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота