Пусть Ф - сумма монет у Фомы. Е - сумма монет у Ерёмы; Ю - сумма монет у Юлия. х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну. Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну: 70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну: Ф - 40 = Ю
{ Ф - х = Е + х { 70 + Е = Ю { Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными: { Ф - 2х = Е (1) { 70 + Е = Ю (2) { Ф - 40 = Ю (3)
Сложим первые два уравнения: Ф - 2х + 70 + Е = Е + Ю Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим : Ф - 40 - (Ф - 2х + 70) = Ю - Ю Ф - 40 - Ф + 2х - 70 = 0 2х - 110 = 0 2х = 110 х = 110 : 2 х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
О некотором трёхзначном числе известно, что число его десятков на 3 больше числа сотен. Пусть число сотен этого числа - х, тогда число десятков - х+3. Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3). Тогда исходное число М=100х+10(х+3)+30/(х+3) Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х Т.к. новое число превышает исходное число на 396, то имеем 1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396 3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3 3000+х²+3х-100х²-300х-30-396х-1188=0 -99х²-396х+1782=0 х²+7х-18=0 х₁*х₂=-18 х₁+х₂=-7 х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами. М=100*2+10*5+30/5=256, √М=√256=16 ответ: 16
Е - сумма монет у Ерёмы;
Ю - сумма монет у Юлия.
х - сумма монет Фома должен отдать Ерёме, чтобы у них было поровну.
Ф - х = Е + х
Если Фома отдаст Ерёме 70 монет, то у Ерёмы и Юлия будет поровну:
70 + Е = Ю
Если Фома отдаст Ерёме 40 монет, то у Фомы и Юлия будет поровну:
Ф - 40 = Ю
{ Ф - х = Е + х
{ 70 + Е = Ю
{ Ф - 40 = Ю
Получили систему из трех уравнений с 4-мя неизвестными:
{ Ф - 2х = Е (1)
{ 70 + Е = Ю (2)
{ Ф - 40 = Ю (3)
Сложим первые два уравнения:
Ф - 2х + 70 + Е = Е + Ю
Ф - 2х + 70 = Ю
Вычтем проученное уравнение из 3-го уравнение с третьим :
Ф - 40 - (Ф - 2х + 70) = Ю - Ю
Ф - 40 - Ф + 2х - 70 = 0
2х - 110 = 0
2х = 110
х = 110 : 2
х = 55 монет Фома должен отдать Ерёме, чтобы у них было поровну.
ответ: 55 монет.
Проверка:
{ Ф - 55 = Е + 55
{ 70 + Е = Ю
{ Ф - 40 = Ю
{ Ф = Е + 110
{ Е = Ю - 70 подставим в первое уравнение.
{ Ф = Ю + 40 подставим в первое уравнение.
Ю + 40 = Ю - 70 + 110
40 + 70 = 110
110 = 110
Произведение числа десятков и единиц равно 30, значит число единиц - 30/(х+3).
Тогда исходное число М=100х+10(х+3)+30/(х+3)
Если поменять первую и последнюю цифры числа, то получится число 1000/(х+3)+10(х+3)+х
Т.к. новое число превышает исходное число на 396, то имеем
1000/(х+3)+10(х+3)+х-(100х+10(х+3)+30/(х+3))=396
3000/(х+3)+х-100х-30/(х+3)-396=0 умножим обе части уравнения на х+3
3000+х²+3х-100х²-300х-30-396х-1188=0
-99х²-396х+1782=0
х²+7х-18=0
х₁*х₂=-18
х₁+х₂=-7
х₁=2 х₂=-9 - не удовлетворяет условию задачи, т.к.цифры числа задаются натуральными числами.
М=100*2+10*5+30/5=256, √М=√256=16
ответ: 16