Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
Для решения данного задания, вспомним, что всякое составное число может быть единственным образом представлено в виде произведения простых множителей.
1) 27 : 3 = 9;
9 : 3 = 3;
3 : 3 = 1;
27 = 3 · 3 · 3.
2) 56 : 2 = 28;
28 : 2 = 14;
14 : 2 = 7;
7 : 7 = 1;
56 = 2 · 2 · 2 · 7;
3) 625 : 5 = 125;
125 : 5 = 25;
25 : 5 = 5;
5 : 5 = 1;
625 = 5 · 5 · 5 · 5.
4) 820 : 2 = 410;
410 : 2 = 205;
205 : 5 = 41;
41 : 41 = 1;
820 = 2 · 2 · 5 · 41.
5) 2772 : 2 = 1386;
1386 : 2 = 693;
693 : 3 = 231;
231 : 3 = 77;
77 : 7 = 11;
11 : 11 = 1
2772 = 2 · 2 · 3 · 3 · 7 · 11.
6) 702 : 2 = 351;
351 : 3 = 117;
117 : 3 = 39;
39 : 3 = 13;
13 : 13 = 1;
702 = 2 · 3 · 3 · 3 · 13.
7) 1224 : 2 = 612;
612 : 2 = 306;
306 : 2 = 153;
153 : 3 = 51;
51 : 3 = 17;
17 : 17 = 1;
1224 = 2 · 2 · 2 · 3 · 3 · 17
1000x+100y+10z+t-1000t-100z-10y-x=909
999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем
111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1
x=t+1, z=y+1
По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число
t+1+y+y+1+t=9n
2(t+y+1)=9n, значит n=2, t+y=8
Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t
8 1 2 7
7 2 3 6
6 3 4 5
5 4 5 4
4 5 6 3
3 6 7 2
2 7 8 1
9 0 1 8
Итого 8 чисел удовлетворяют условию задачи