ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.
4. Если диагонали четырехугольника пересекаются в одной точке и пересечения делятся в ней пополам, то четырехугольник - параллелограмм,
диагональ МК х=(2+6)/2=4; у=(2+6)/2=4 (4; 4)
диагональ NР х=(5+3)/2=4; у=(3+5)/2=4 (4; 4)
Точки совпали (4; 4) - является середина диагонали, следовательно MNKP - параллелограммом.
5. Мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
вектор NK=(6-5;6-3)=(1;3)
вектор KР=(3-6; 5-6)=(-3;-1)
вектор РМ=(3-2; 5-2) = (1;3)
Получаем, что MN=NK=KP=PM, а из этого следуют что MNPK - квадрат, по определению.
Но, по свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(6-2; 6-2) = (4;4) и NP=(3-5; 5-3)=(-2 ;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению
ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.
Пошаговое объяснение:
4. Если диагонали четырехугольника пересекаются в одной точке и пересечения делятся в ней пополам, то четырехугольник - параллелограмм,
диагональ МК х=(2+6)/2=4; у=(2+6)/2=4 (4; 4)
диагональ NР х=(5+3)/2=4; у=(3+5)/2=4 (4; 4)
Точки совпали (4; 4) - является середина диагонали, следовательно MNKP - параллелограммом.
5. Мы знаем, что у ромба все стороны равны, следовательно рассмотрит векторы его сторон:
вектор MN=(5-2;3-2)=(3;1)
вектор NK=(6-5;6-3)=(1;3)
вектор KР=(3-6; 5-6)=(-3;-1)
вектор РМ=(3-2; 5-2) = (1;3)
Получаем, что MN=NK=KP=PM, а из этого следуют что MNPK - квадрат, по определению.
Но, по свойству ромба, у него диагонали не равны, следовательно рассмотрим векторы -диагонали.
МК=(6-2; 6-2) = (4;4) и NP=(3-5; 5-3)=(-2 ;2)
Из этого следует, что диагонали квадрата не равны, следовательно это ромб, по определению