Так как as=bs=8 и bc=ac=17, то вершина пирамиды S лежит в вертикальной плоскости.Проведём вертикальную секущую плоскость через вершины S и С. В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС. Находим стороны треугольника SDC: DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549. SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6. Высота из вершины S является высотой пирамиды SО. Находим её по формуле:
Подставим значения: a b c p 2p 16.155494 15 6 18.577747 37.15549442 и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145. Площадь основания пирамиды находим по формуле Герона: a b c p 2p S 17 17 10.583005 22.291503 44.58300524 85.48684109. Площадь основания можно выразить так: S = 85.48684109 = √7308 = 6√(7*29). Тогда получаем объём пирамиды: V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.
Два круга пересекаются и у них общая хорда АВ.
Один круг с центром О₁ и радиусом О₁А=О₁В=R₁.
Второй круг с центром О₂ и радиусом О₂А=О₂В=R₂.
Градусная мера дуги измеряется градусной мерой центрального угла.
Значит <АО₁В=60° и <АО₂В=120°.
Из ΔАО₁В по т.косинусов найдем АВ:
АВ²=R₁²+R₁²-2R₁*R₁*cos 60=2R₁²-2R₁²*1/2=R₁²
Аналогично из ΔАО₂В по т.косинусов найдем АВ:
АВ²=R₂²+R₂²-2R₂*R₂*cos 120=2R₁²-2R₁²*(-1/2)=3R₂².
Приравниваем R₁²=3R₂²
Площадь первого круга S₁=πR₁²=π*3R₂²
Площадь второго круга S₂=πR₂²
Отношение площадей S₁/S₂=π*3R₂²/πR₂²=3/1
ответ: 3:1
В сечении имеем треугольник SDC, где D - основание высоты из точки С равнобедренного треугольника АВС.
Находим стороны треугольника SDC:
DC = √(17² - (1/2)4√7)²) = √(289 - 28) = √261 = 16.15549.
SD = √(8² - (1/2)4√7)²) = √(64 - 28) = √36 = 6.
Высота из вершины S является высотой пирамиды SО.
Находим её по формуле:
Подставим значения:
a b c p 2p
16.155494 15 6 18.577747 37.15549442
и получаем высоту SО = 90 / √261 = 30 / √29 = 5.570860145.
Площадь основания пирамиды находим по формуле Герона:
a b c p 2p S
17 17 10.583005 22.291503 44.58300524 85.48684109.
Площадь основания можно выразить так:
S = 85.48684109 = √7308 = 6√(7*29).
Тогда получаем объём пирамиды:
V = (1/3)S*H = (1/3)*(6√(7*29))*(30/√29) = 60/√7 = 22,67787 куб. ед.