А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
120 = 2³ · 3 · 5
300 = 2² · 3 · 5²
100 = 2² · 5²
наименьшее общее кратное = 2³ · 3 · 5² = 600
480 = 2^5 · 3 · 5
216 = 2³ · 3³
144 = 2^4 · 3²
наименьшее общее кратное = 2^5 · 3³ · 5 = 4320
105 = 3 · 5 · 7
350 = 2 · 5² · 7
140 = 2² · 5 · 7
наименьшее общее кратное = 3 · 5² · 7 · 2² = 2100
280 = 2³ · 5 · 7
140 = 2² · 5 · 7
224 = 2^5 · 7
наименьшее общее кратное = 2^5 · 5 · 7 = 1120
подробнее - на -
А) Пусть произведение чисел n – 1, n, n + 1 является точной m-й степенью. Поскольку число n взаимно просто с числами n – 1 и n + 1, то любой простой делитель числа n входит в разложение числа (n – 1)n(n + 1) с таким же показателем, с каким он входит в разложение числа n, то есть он входит в разложение числа n в степени, кратной m. Поэтому n (а следовательно, и n²) является точной m-й степенью. Но и (n – 1)(n + 1) = n² – 1 также является m-й степенью натурального числа, как частное от деления чисел (n – 1)n(n + 1) и n, являющихся m-ми степенями. Таким образом, нами найдены два последовательных натуральных числа (n² и n² – 1), являющихся m-ми степенями. Ясно, что это невозможно. Противоречие.
б) Среди пяти подряд идущих чисел есть два чётных, одно из которых делится на 4. Поэтому в разложении произведения на простые множители число 2 встретится трижды. Значит, произведение делится на 3, 5 и 8, то есть и на их произведение 120.
Пошаговое объяснение:
А) не может