Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз.
Пропорциональность бывает прямой и обратной. В данном уроке мы рассмотрим каждую из них.
Содержание урока
Прямая пропорциональность
Обратная пропорциональность
Прямая пропорциональность
Предположим, что автомобиль двигается со скоростью 50 км/ч. Мы помним, что скорость это расстояние, пройденное за единицу времени (1 час, 1 минуту или 1 секунду). В нашем примере автомобиль двигается со скоростью 50 км/ч, то есть за один час он будет проезжать расстояние, равное пятидесяти километрам.
Изобразим на рисунке расстояние, пройденное автомобилем за 1 час
Если мы берём производную по а то ответ будет просто
Так же производную невозможно искать если приравнивать к нулю.
Рассчитывал производную по основной формуле . Если мы берём производную от степени то уменьшаем её на 1 и выносим изначальное число степени перед иксом.
А так же если у мы берём допустим по х то там где просто то это равно 0 и мы не учитываем, а если есть х и у то смотрим на степень х и у и действуем по схеме выше. Так как у нас в конце стоит 3ху и х и у в первой степени, то мы просто убираем либо х либо у, и оставляем либо х либо у.
Пропорциональность — это взаимосвязь между двумя величинами, при которой изменение одной из них влечет за собой изменение другой во столько же раз.
Пропорциональность бывает прямой и обратной. В данном уроке мы рассмотрим каждую из них.
Содержание урока
Прямая пропорциональность
Обратная пропорциональность
Прямая пропорциональность
Предположим, что автомобиль двигается со скоростью 50 км/ч. Мы помним, что скорость это расстояние, пройденное за единицу времени (1 час, 1 минуту или 1 секунду). В нашем примере автомобиль двигается со скоростью 50 км/ч, то есть за один час он будет проезжать расстояние, равное пятидесяти километрам.
Изобразим на рисунке расстояние, пройденное автомобилем за 1 час
Если мы ищем производную по х то ответ будет
Если мы ищем производную по у то ответ будет
Если мы берём производную по а то ответ будет просто
Так же производную невозможно искать если приравнивать к нулю.
Рассчитывал производную по основной формуле . Если мы берём производную от степени то уменьшаем её на 1 и выносим изначальное число степени перед иксом.
А так же если у мы берём допустим по х то там где просто то это равно 0 и мы не учитываем, а если есть х и у то смотрим на степень х и у и действуем по схеме выше. Так как у нас в конце стоит 3ху и х и у в первой степени, то мы просто убираем либо х либо у, и оставляем либо х либо у.
Пошаговое объяснение: