В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
984263524353848
984263524353848
27.07.2022 05:30 •  Математика

решить вероятность 1) Какова вероятность того, что из 1095 студентов факультета : а). ровно 2 родились 4 апреля ; б) хотя бы у одного день рождения 4 апреля .

Показать ответ
Ответ:
37к6
37к6
12.11.2020 15:16

Пошаговое объяснение:4 7 0 4  8 2 0 0      

4 1 0 0 0 0 . 5 7 3 6 5 8 5  8200 × 5 = 41000

- 6 0 4 0 0          47040 - 41000 = 6040

5 7 4 0 0          8200 × 7 = 57400

- 3 0 0 0 0         60400 - 57400 = 3000

2 4 6 0 0         8200 × 3 = 24600

- 5 4 0 0 0        30000 - 24600 = 5400

4 9 2 0 0        8200 × 6 = 49200

- 4 8 0 0 0       54000 - 49200 = 4800

4 1 0 0 0       8200 × 5 = 41000

- 7 0 0 0 0      48000 - 41000 = 7000

6 5 6 0 0      8200 × 8 = 65600

- 4 4 0 0 0     70000 - 65600 = 4400

4 1 0 0 0     8200 × 5 = 41000

3 0 0 0     44000 - 41000 = 3000

0,0(0 оценок)
Ответ:
Kotmi679
Kotmi679
10.03.2022 22:21
Положим что данное выражение равно s(n) , и преобразуем s(n)=2^(2^n)+2^(2^(n-1))+1=(2^(2^(n-1))+1)^2-2^(2^(n-1)) 1) Используя формулу разности квадратов , разложим на множители число s , для определенного n имеем s(n)=(2^(2^(n-1))-2^(2^(n-2))+1)*(2^(2^(n-2))-2^(2^(n-3))+1)*(2^(2^(n-3))-2^(2^(n-4))+1)*...*7 (7-это число s при n=1) 2) докажем что каждые два множителя s (вышеописанные множители) взаимно просты. 3)Для начала возьмём какие-нибудь два числа вида 2^(2^n)+1 и 2^(2^k)+1 , тогда докажем что НОД этих чисел будет равен 1. Без потери общности , положим n>k>0 , то все по той же разности квадратов получим 2^(2^n)+1=(2^(2^(n-1))+1)*(2^(2^(n-2))+1)*(2^(2^(n-3))+1)*...(2^(2^k)+1)*...*5 + 2 То есть это говорит о том что, число 2^(2^(n))+1 при деланий на 2^(2^(k))+1 даёт остаток равный 2 и НОД(2^(2^(k))+1 , 2)=1 так как числа рассматриваемого вида , всегда нечётна . То есть числа взаимно простые. 4)Теперь докажем пункт номер 2. Рассмотрим числа вида X=2^(2^k)-2^(2^(k-1))+1 и Y=2^(2^m)-2^(2^(m-1))+1 Используя формулу (a^2-a+1)(a+1)=a^3+1, заменим (2^(2^(k-1))+1)=u и (2^(2^(m-1))+1)=v получим что X*(2^(2^(k-1))+1)=X*u=2^(3*2^(k-1))+1=A , аналогично Y*(2^(2^(m-1))+1)=Y*v=2^(3*2^(m-1))+1=B Для чисел A и B рассуждая абсолютно аналогично как и в пункте 3 , следует что нод (A,B)=1 то есть они взаимно просты. Стало быть если НОД(X*u,Y*v)=1 и НОД(u,v)=1 значит и НОД(X,Y)=1 тем самым пункт 2 доказан. 5) Если записать упрощенна s(n)=a1*a2*a3*a4***a(n-1)*..*7 из пункта 2 следует (то что любые два числа взаимно просты) , это значит что у s(n) не существует простых делителей вида p^a где p-простое число , "a" целое положительное. В свою очередь это значит что если числа a1,a2,a3 итд являются сами простыми , то у него будет ровно n делителей , если хотя бы какое одно число не простое , то при разложений его , на простые множители , учитывая пункт 2, очевидно что будет больше чем n делителей.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота