Ошибаются второй и третий, а первый оказался прав, так как он говорит, что королеве больше 43 лет, значит ей либо 44 лет, либо больше. Поскольку второй и третий ошибаются, значит королеве не больше 44 и не больше 45, а значит ей 44.
Если бы первый и третий ошибались, в второй говорил правду, то получалось бы всё нелогично, так как по этой логике первый говорит неправду, значит королеве не больше 43, но согласно высказыванию второго (который в данном случае прав) ей больше 44, и получается противоречие. Аналогично можно опровергнуть вариант, в котором 1 и 2 говорят неправду, а 3 правду. Остаётся только последний вариант, в котором первый говорит правду, а двое других – неправду, и который оказался верным
1) 64 = 2⁶; 54 = 2 · 3³
НОК (64 и 54) = 2⁶ · 3³ = 1728 - наименьшее общее кратное
1728 : 64 = 27 1728 : 54 = 32
2) 95 = 5 · 19; 114 = 2 · 3 · 19
НОК (95 и 114) = 2 · 3 · 5 · 19 = 570 - наименьшее общее кратное
570 : 95 = 6 570 : 114 = 5
3) 100 = 2² · 5²; 125 = 5³
НОК (100 и 125) = 2² · 5³ = 500 - наименьшее общее кратное
500 : 100 = 5 500 : 125 = 4
4) 121 = 11²; 88 = 2³ · 11
НОК (121 и 88) = 2³ · 11² = 968 - наименьшее общее кратное
968 : 121 = 8 968 : 88 = 11
5) 168 = 2³ · 3 · 7; 140 = 2² · 5 · 7
НОК (168 и 140) = 2³ · 3 · 5 · 7 = 840 - наименьшее общее кратное
840 : 168 = 5 840 : 140 = 6
6) 144 = 12²; 324 = 2² · 3⁴
Числа 144 и 324 взаимно простые, так как у них нет общих делителей, кроме единицы
НОК (144 и 324) = 144 · 324 = 46656 - наименьшее общее кратное
7) 125 = 5³; 225 = 3² · 5²
НОК (125 и 225) = 3² · 5³ = 1125 - наименьшее общее кратное
1125 : 125 = 9 1125 : 225 = 5
8) 185 = 5 · 37; 111 = 3 · 37
НОК (185 и 111) = 3 · 5 · 37 = 555 - наименьшее общее кратное
555 : 185 = 3 555 : 111 = 5
44 года ей было.
Пошаговое объяснение:
Ошибаются второй и третий, а первый оказался прав, так как он говорит, что королеве больше 43 лет, значит ей либо 44 лет, либо больше. Поскольку второй и третий ошибаются, значит королеве не больше 44 и не больше 45, а значит ей 44.
Если бы первый и третий ошибались, в второй говорил правду, то получалось бы всё нелогично, так как по этой логике первый говорит неправду, значит королеве не больше 43, но согласно высказыванию второго (который в данном случае прав) ей больше 44, и получается противоречие. Аналогично можно опровергнуть вариант, в котором 1 и 2 говорят неправду, а 3 правду. Остаётся только последний вариант, в котором первый говорит правду, а двое других – неправду, и который оказался верным