а = 20 см - длина
b = 12 см - ширина
с = 24 см - высота
V = abc = 20 · 12 · 24 = 5760 см³ - объём прямоугольного параллелепипеда
20 = 2² · 5 12 = 2² · 3 24 = 2³ · 3
НОД (20, 12 и 24) = 2² = 4 - наибольший общий делитель ⇒ параллелепипед можно разрезать на кубики с ребром 2 см или 4 см
2³ = 2 · 2 · 2 = 8 см³ - объём одного кубика
5760 : 8 = 720 - количество кубиков
Или так:
20 : 2 = 10 раз по 2 см в длину
12 : 2 = 6 раз по 2 см в ширину
24 : 2 = 12 раз по 2 см в высоту
10 · 6 · 12 = 720 - количество кубиков с ребром 2 см
ответ: 720 кубиков.
Пример 1. Проверить компланарны ли три вектора a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.
Решение: найдем смешанное произведение векторов
a · [b × с] = 1 2 3 =
1 1 1
1 2 1
= 1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2
ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.
Пример 2. Доказать что три вектора a = {1; 1; 1}, b = {1; 3; 1} и c = {2; 2; 2} компланарны.
a · [b × с] = 1 1 1 =
1 3 1
2 2 2
= 1·2·3 + 1·1·2 + 1·1·2 - 1·2·3 - 1·1·2 - 1·1·2 = 6 + 2 + 2 - 6 - 2 - 2 = 0
ответ: вектора компланарны так, как их смешанное произведение равно нулю.
Пример 3. Проверить коллинеарны ли вектора a = {1; 1; 1}, b = {1; 2; 0}, c = {0; -1; 1}, d = {3; 3; 3}.
Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования
( 1 1 1 ) ~
1 2 0
0 -1 1
3 3 3
из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3
~ ( 1 1 1 ) ~ ( 1 1 1 ) ~
1 - 1 2 - 1 0 - 1 0 1 -1
0 -1 1 0 -1 1
3 - 3 3 - 3 3 - 3 0 0 0
к 3-тей строке добавим 2-рую
~ ( 1 1 1 ) ~ ( 1 1 1 )
0 1 -1 0 1 -1
0 + 0 -1 + 1 1 + (-1) 0 0 0
Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.
ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора
а = 20 см - длина
b = 12 см - ширина
с = 24 см - высота
V = abc = 20 · 12 · 24 = 5760 см³ - объём прямоугольного параллелепипеда
20 = 2² · 5 12 = 2² · 3 24 = 2³ · 3
НОД (20, 12 и 24) = 2² = 4 - наибольший общий делитель ⇒ параллелепипед можно разрезать на кубики с ребром 2 см или 4 см
2³ = 2 · 2 · 2 = 8 см³ - объём одного кубика
5760 : 8 = 720 - количество кубиков
Или так:
20 : 2 = 10 раз по 2 см в длину
12 : 2 = 6 раз по 2 см в ширину
24 : 2 = 12 раз по 2 см в высоту
10 · 6 · 12 = 720 - количество кубиков с ребром 2 см
ответ: 720 кубиков.
Пример 1. Проверить компланарны ли три вектора a = {1; 2; 3}, b = {1; 1; 1}, c = {1; 2; 1}.
Решение: найдем смешанное произведение векторов
a · [b × с] = 1 2 3 =
1 1 1
1 2 1
= 1·1·1 + 1·1·2 + 1·2·3 - 1·1·3 - 1·1·2 - 1·1·2 = 1 + 2 + 6 - 3 - 2 - 2 = 2
ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.
Пример 2. Доказать что три вектора a = {1; 1; 1}, b = {1; 3; 1} и c = {2; 2; 2} компланарны.
Решение: найдем смешанное произведение векторов
a · [b × с] = 1 1 1 =
1 3 1
2 2 2
= 1·2·3 + 1·1·2 + 1·1·2 - 1·2·3 - 1·1·2 - 1·1·2 = 6 + 2 + 2 - 6 - 2 - 2 = 0
ответ: вектора компланарны так, как их смешанное произведение равно нулю.
Пример 3. Проверить коллинеарны ли вектора a = {1; 1; 1}, b = {1; 2; 0}, c = {0; -1; 1}, d = {3; 3; 3}.
Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования
( 1 1 1 ) ~
1 2 0
0 -1 1
3 3 3
из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3
~ ( 1 1 1 ) ~ ( 1 1 1 ) ~
1 - 1 2 - 1 0 - 1 0 1 -1
0 -1 1 0 -1 1
3 - 3 3 - 3 3 - 3 0 0 0
к 3-тей строке добавим 2-рую
~ ( 1 1 1 ) ~ ( 1 1 1 )
0 1 -1 0 1 -1
0 + 0 -1 + 1 1 + (-1) 0 0 0
3 - 3 3 - 3 3 - 3 0 0 0
Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.
ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора