Звёздная величина́ (блеск) — безразмерная числовая характеристика яркости объекта, обозначаемая буквой m. Обычно понятие применяется к небесным светилам. Звёздная величина характеризует поток энергии от рассматриваемого светила (энергию всех фотонов в секунду) на единицу площади. Таким образом, видимая звёздная величина зависит и от физических характеристик самого объекта (то есть светимости), и от расстояния до него. Чем меньше значение звёздной величины, тем ярче данный объект. Понятие звёздной величины используется при измерении потока энергии в видимом, инфракрасном и ультрафиолетовом диапазоне. В звёздных величинах измеряется проницающая сила телескопов и астрографов.
sin(a-b)≡ sin(a)*cos(b) - cos(a)*sin(b);
тогда
sin(π/4 -t) ≡ sin(π/4)*cos(t) - cos(π/4)*sin(t) ≡ V,
sin(π/4) = cos(π/4) = 1/√2.
V≡ (1/√2)*( cos(t) - sin(t) ).
cos(a-b)≡ cos(a)*cos(b) + sin(a)*sin(b);
тогда
cos(π/4 -t) ≡ cos(π/4)*cos(t) + sin(π/4)*sin(t)≡ (1/√2)*( cos(t) + sin(t) ).
Тогда
tg(π/4 -t)≡ [ (1/√2)*( cos(t) - sin(t) ) ]/[ (1/√2)*( cos(t) + sin(t) ) ] ≡
≡ ( cos(t) - sin(t) )/( cos(t) + sin(t) ).
По условию sin(t) = 3/5, и 0<t<π/2.
Найдем cos(t).
Из основного тригонометрического тождества имеем
cos²(t)≡1-sin²(t)= 1 - (3/5)² = 1 - (9/25) = (25-9)/25 = 16/25.
Т.к. 0<t<π/2, это первая четверть, а косинус в первой четверти положителен, то есть cos(t)>0.
Поэтому из предыдущего cos(t) = √(16/25) = 4/5.
tg(π/4 - t)≡(cos(t) - sin(t))/(cos(t) + sin(t)) = ( (4/5) - (3/5))/( (4/5) + (3/5) =
= (4-3)/(4+3) = 1/7.