Из формализованных языков математики – язык логики предикатов – самый близкий к естественному. Работы по искусственному интеллекту используют именно этот язык, хотя у этого языка есть ограничения. При переводе высказываний естественного языка на язык исчисления предикатов необходимо понимать, что на языке логики предикатов можно описать многое, но далеко не все. Поэтому при символизации языка требуется аккуратность и глубокое понимание текста.
В естественном языке слово “все” обычно опускается.
Так, например, “Рыбы дышат жабрами” означает, что все рыбы дышат жабрами или, что каждая рыба дышит жабрами. Если обозначить , а , то при символизации фразы “Рыбы дышат жабрами” необходимо использовать квантор всеобщности: .
Однако не в каждом случае слова “все” понимаются как “каждый”. Например, предложение “Все песчинки образуют кучу песка” вовсе не означает, что каждая песчинка образует кучу песка. В этом случае употреблять квантор всеобщности нельзя.
Рассмотрим особенности перевода на язык исчисления предикатов следующих выражений: “Все студенты отличники” и “Некоторые студенты отличники”.
Первое выражение может быть перефразировано так: “Для всех справедливо, если - студент, то - отличник”. Перевод этой фразы будет таким: , где - “ - студент”, - “ - отличник”.
Второе выражение может быть перефразировано так: “Для некоторых справедливо: - студент и - отличник”. Перевод этой фразы будет таким: . Использование в этом случае конструкции: “Для некоторых справедливо: если - студент, то - отличник” является неверным, так как стоит попасть в компанию одному нестуденту, и он сделает этот предикат истинным, даже если там нет ни одного отличника.
Вот еще один пример: “Собакам и кошкам вход запрещен”. Формально перевод будет таким: “Если - собака и - кошка, то - вход запрещен”. Однако, ясно, что таких , которые были бы одновременно и собакой и
кошкой, не существует. Правильным будет такой перевод:
Вектор а = {14, 6, 8} Пусть вектор Ox - базисный вектор по оси абсцисс Тогда координаты вектора Ох = {1, 0, 0} Пусть вектор p = {x, y, z}
Координаты вектора а имеем право сократить на одно число, так как нам не важна длина векторов, исключительно их взаимное расположение. Сократим на 2 а = {7, 3, 4}
Если вектора перпендикулярны, то их скалярное произведение равно нулю. Составим систему: p * Ox = 0 p * a = 0
Распишем скалярные произведения через координаты: x*1 + y*0 + z*0 = 0 x*7 + y*3 + z*4 = 0
Из первого уравнения сразу же находим x=0. Подставим это во второе уравнение: 0*7 + 3y + 4z = 0 3y + 4z = 0 z = -3/4y
Также не забываем что вектор должен быть единичным, то есть длина вектора равна 1 (корень сразу сократил, т.к. равенство единице): x^2 + y^2 + z^2 = 1
Получили два уравнения z = -3/4y y^2 + z^2 = 1
Подставляем 1 во второе: y^2 + 9/16y^2 = 1 25/16y^2 = 1 y^2 = 16/25 y = 4/5; y = -4/5 z = - 3/5; z = 3/5
Получили два вектора: p1 = {0, 0.8, -0.6} p2 = {0, -0.8, 0.6}
Можно заметить, что эти два вектора противоположно направлены, то есть по сути они лежат на одной прямой, перпендикулярной и вектор а, и оси абсцисс.
Из формализованных языков математики – язык логики предикатов – самый близкий к естественному. Работы по искусственному интеллекту используют именно этот язык, хотя у этого языка есть ограничения. При переводе высказываний естественного языка на язык исчисления предикатов необходимо понимать, что на языке логики предикатов можно описать многое, но далеко не все. Поэтому при символизации языка требуется аккуратность и глубокое понимание текста.
В естественном языке слово “все” обычно опускается.
Так, например, “Рыбы дышат жабрами” означает, что все рыбы дышат жабрами или, что каждая рыба дышит жабрами. Если обозначить , а , то при символизации фразы “Рыбы дышат жабрами” необходимо использовать квантор всеобщности: .
Однако не в каждом случае слова “все” понимаются как “каждый”. Например, предложение “Все песчинки образуют кучу песка” вовсе не означает, что каждая песчинка образует кучу песка. В этом случае употреблять квантор всеобщности нельзя.
Рассмотрим особенности перевода на язык исчисления предикатов следующих выражений: “Все студенты отличники” и “Некоторые студенты отличники”.
Первое выражение может быть перефразировано так: “Для всех справедливо, если - студент, то - отличник”. Перевод этой фразы будет таким: , где - “ - студент”, - “ - отличник”.
Второе выражение может быть перефразировано так: “Для некоторых справедливо: - студент и - отличник”. Перевод этой фразы будет таким: . Использование в этом случае конструкции: “Для некоторых справедливо: если - студент, то - отличник” является неверным, так как стоит попасть в компанию одному нестуденту, и он сделает этот предикат истинным, даже если там нет ни одного отличника.
Вот еще один пример: “Собакам и кошкам вход запрещен”. Формально перевод будет таким: “Если - собака и - кошка, то - вход запрещен”. Однако, ясно, что таких , которые были бы одновременно и собакой и
кошкой, не существует. Правильным будет такой перевод:
“Если - собака или - кошка, то - вход воспрещен”.
Пошаговое объяснение:
Пусть вектор Ox - базисный вектор по оси абсцисс
Тогда координаты вектора Ох = {1, 0, 0}
Пусть вектор p = {x, y, z}
Координаты вектора а имеем право сократить на одно число, так как нам не важна длина векторов, исключительно их взаимное расположение. Сократим на 2
а = {7, 3, 4}
Если вектора перпендикулярны, то их скалярное произведение равно нулю.
Составим систему:
p * Ox = 0
p * a = 0
Распишем скалярные произведения через координаты:
x*1 + y*0 + z*0 = 0
x*7 + y*3 + z*4 = 0
Из первого уравнения сразу же находим x=0. Подставим это во второе уравнение:
0*7 + 3y + 4z = 0
3y + 4z = 0
z = -3/4y
Также не забываем что вектор должен быть единичным, то есть длина вектора равна 1 (корень сразу сократил, т.к. равенство единице):
x^2 + y^2 + z^2 = 1
Получили два уравнения
z = -3/4y
y^2 + z^2 = 1
Подставляем 1 во второе:
y^2 + 9/16y^2 = 1
25/16y^2 = 1
y^2 = 16/25
y = 4/5; y = -4/5
z = - 3/5; z = 3/5
Получили два вектора:
p1 = {0, 0.8, -0.6}
p2 = {0, -0.8, 0.6}
Можно заметить, что эти два вектора противоположно направлены, то есть по сути они лежат на одной прямой, перпендикулярной и вектор а, и оси абсцисс.
ответ: {0, 0.8, -0.6} или {0, -0.8, 0.6}