Последняя цифра должна быть четной чтоб делилась на 8, следовательно, последняя цифра числа 8, из 2-х значных чисел такие 78 и 88 они не делятся на 7, переходим к 3-х значным числам, 778, 788, 888 по признаку делимости на 8 подходит только 888, но оно не делится на 7 следовательно переходим к 4-х значным числам последние 3 цифры которых должны быть 8 по признаку деления на 8: 7888 и 8888 они оба не делятся на 7 переходим к 5 значным числам 77888, 78888, 87888, 88888 они не делятся на 7 переходим к 6-ти значным числам 777888, 778888, 787888, 788888, 877888, 878888, 887888, 888888 они не делятся на 7, но по признаку деления на 7: 788888 - 16 делится на 7 следовательно исходное число 7888888 ответ 7888888
Пошаговое объяснение: Угол между плоскостями – двугранный угол. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Обозначим квадрат АВСD, прямоугольник ТВСЕ. Ребром угла между их плоскостями является их общая сторона ВС.
КМ⊥ВС, МН⊥ВС. Плоскость, содержащая угол 30°, перпендикулярна плоскостям обеих граней.
АD║ВС, ТЕ║ВС ⇒ ТЕ║AD. Искомое расстояние - длина отрезка КН между ними.
Длина общей стороны ВС данных фигур - сторона квадрата, поэтому ВС=√S=√36=6 см. НМ=АВ=6 см, КМ=ТВ=9 см. т.к. параллельны им и пересекаются с противоположными сторонами прямоугольников под прямым углом.
По т.косинусов КН²=КМ²+НМ*-2КМ•НМ•cos30°
КН²=36+81-2•6•9•√3/2, откуда КН=√(117-54√3)=≈14,51 см
ответ 7888888
ответ: ≈14,51 см
Пошаговое объяснение: Угол между плоскостями – двугранный угол. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Обозначим квадрат АВСD, прямоугольник ТВСЕ. Ребром угла между их плоскостями является их общая сторона ВС.
КМ⊥ВС, МН⊥ВС. Плоскость, содержащая угол 30°, перпендикулярна плоскостям обеих граней.
АD║ВС, ТЕ║ВС ⇒ ТЕ║AD. Искомое расстояние - длина отрезка КН между ними.
Длина общей стороны ВС данных фигур - сторона квадрата, поэтому ВС=√S=√36=6 см. НМ=АВ=6 см, КМ=ТВ=9 см. т.к. параллельны им и пересекаются с противоположными сторонами прямоугольников под прямым углом.
По т.косинусов КН²=КМ²+НМ*-2КМ•НМ•cos30°
КН²=36+81-2•6•9•√3/2, откуда КН=√(117-54√3)=≈14,51 см