В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
cot579
cot579
17.06.2022 14:17 •  Математика

Решить , используя понятия наибольшего наименьшего значения функции. найти наибольший объем конуса, образующая которого равна l = √3(м).

Показать ответ
Ответ:
kirillp02
kirillp02
07.10.2020 16:35
Объём конуса V=π*R²*h, где R и h - радиус основания и высота конуса. По теореме Пифагора, R²+h²=l²=3 м², откуда R²=3-h² м². Тогда V= π*(3-h²)*h/3= π/3*(3*h-h³) м³. Производная V'(h)=π/3*(3-3*h²) м². Приравнивая её к нулю, приходим к уравнению π*(1-h²)=0, или 1-h²=0. Так как h>0, то h=1 м - критическая точка. При h<1 V'(h)>0, при h>1 V'(h)<0, поэтому точка h=1 является точкой максимума функции V(h), то есть объём конуса имеет наибольшее значение при h=1 м. Это значение Vmax=π*(3-1²)*1/3=2*π/3 м³. ответ: 2*π/3 м³.  
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота