Испытания Бернулли: пусть есть n независимых испытаний, вероятность успеха в каждом из них равна p, вероятность неудачи q = 1 - p. Тогда вероятность того, что будет ровно k успехов равна C(n, k) p^k q^(n - k), где C(n, k) - биномиальный коэффициент C(n, k) = n! / (k! (n - k)!)
В обоих случаях будем искать вероятность того, что описанное в условии не произойдет - так проще.
а) Противоположное событие: произвошло меньше 4 неправильных соединений (т.е. 0, 1, 2 или 3).
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
Пошаговое объяснение:
Испытания Бернулли: пусть есть n независимых испытаний, вероятность успеха в каждом из них равна p, вероятность неудачи q = 1 - p. Тогда вероятность того, что будет ровно k успехов равна C(n, k) p^k q^(n - k), где C(n, k) - биномиальный коэффициент C(n, k) = n! / (k! (n - k)!)
В обоих случаях будем искать вероятность того, что описанное в условии не произойдет - так проще.
а) Противоположное событие: произвошло меньше 4 неправильных соединений (т.е. 0, 1, 2 или 3).
P(не было неудачных) = (1 - 0,02)^150 = 0.98^150 = 0.0483
P(одно неудачное) = 150 * (1 - 0,02)^149 * 0.02 = 0.1478
P(два неудачных) = 150 * 149 / 2 * (1 - 0,02)^148 * 0.02^2 = 0.2248
P(3) = 150 * 149 * 148 / 6 * (1 - 0.02)^147 * 0.02^3 = 0.2263
P(<4) = 0.0483 + 0.1478 + 0.2248 + 0.2263 = 0.647
P(>=4) = 1 - 0.647 = 0.353
б) всё точно также, только не надо учитывать P(4).
P(<=2) = P(0) + P(1) + P(2) = 0.0483 + 0.1478 + 0.2248 = 0.421
P(>2) = 1 - 0.421 = 0.579
Можно сравнить точные результаты с приближенными. Тут можно вопрольззоваться теоремой Пуассона, P(k) = (np)^(-k) / k! * exp(-np).
Легко проверить, что в этом приближении P(<=2) = 0.423... (ошибка в третьем знаке после запятой), P(<=3) = 0.64723... (ошибка в пятом знаке)
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
Пошаговое объяснение: