Исследовать функцию f (x) = 4x³–6x² и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция f (x) = 4x³–6x² непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.
f(–x) = 4(–x)³–6(–x)² = –(4x³+6x²) ≠ –f(x),
f(–x) = 4(–x)³3–6(–x)² = –(4x³+6x²) ≠ –f(x)
Функция не является ни четной, ни нечетной. Функция непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, 4x³–6x²=0, 2x²(2x–3)=0 ⇒ x=0, x=3/2. Значит (0;3/2), - точки пересечения с осью Ox.
Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y'=0 ⇒ 12x²–12x =0 ⇒ 12x(x–1) = 0 ⇒ x = 0, x = 1 - критические точки.
Если производная положительна - функция возрастает, если производная отрицательна - функция убывает:
отрезок -∞ < x < 0 функция возрастает,
отрезок 0 < x < 3/2 функция убывает,
отрезок 3/2 < X < ∞ функция возрастает.
7*. Вычисление второй производной: у =4x³–6x²,
f '(x) = 12x² - 12x. f ''(x) = 24x - 12.
y''=0, 24x–12= 0, x = 12/24 = 1/2.
8*. Промежутки выпуклости и точки перегиба:
отрезок -∞ < x < 1/2 график функции выпуклый вверх,
точка перегиба х = 1/2,
отрезок 1/2< x < ∞ график функции выпуклый вниз.
9. Найдем значение функции в дополнительной точке: f(1/2) = 4*(1/2)³– 6(1/2)² = 4/8 -6/4 = (4-12) / 8 = -8/8 = –1.
10. Искомый график функции в приложении.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
f '(x) = 12x² - 12x.
Исследовать функцию f (x) = 4x³–6x² и построить ее график.
1. Область определения функции - вся числовая ось.
2. Функция f (x) = 4x³–6x² непрерывна на всей области определения. Точек разрыва нет.
3. Четность, нечетность, периодичность:
График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.
f(–x) = 4(–x)³–6(–x)² = –(4x³+6x²) ≠ –f(x),
f(–x) = 4(–x)³3–6(–x)² = –(4x³+6x²) ≠ –f(x)
Функция не является ни четной, ни нечетной. Функция непериодическая.
4. Точки пересечения с осями координат:
Ox: y=0, 4x³–6x²=0, 2x²(2x–3)=0 ⇒ x=0, x=3/2. Значит (0;3/2), - точки пересечения с осью Ox.
Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.
5. Промежутки монотонности и точки экстремума:
y'=0 ⇒ 12x²–12x =0 ⇒ 12x(x–1) = 0 ⇒ x = 0, x = 1 - критические точки.
Если производная положительна - функция возрастает, если производная отрицательна - функция убывает:
отрезок -∞ < x < 0 функция возрастает,
отрезок 0 < x < 3/2 функция убывает,
отрезок 3/2 < X < ∞ функция возрастает.
7*. Вычисление второй производной: у =4x³–6x²,
f '(x) = 12x² - 12x. f ''(x) = 24x - 12.
y''=0, 24x–12= 0, x = 12/24 = 1/2.
8*. Промежутки выпуклости и точки перегиба:
отрезок -∞ < x < 1/2 график функции выпуклый вверх,
точка перегиба х = 1/2,
отрезок 1/2< x < ∞ график функции выпуклый вниз.
9. Найдем значение функции в дополнительной точке: f(1/2) = 4*(1/2)³– 6(1/2)² = 4/8 -6/4 = (4-12) / 8 = -8/8 = –1.
10. Искомый график функции в приложении.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8