1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
64 мин. Из пункта А в пункт Б велосипедист вышел. Через 48 минут от точки А за ним поехал мотоциклист и прибыл в точку Б одновременно с велосипедистом. Сколько минут велосипедист находился в дороге, если известно, что его скорость в четыре раза меньше скорости мотоциклиста. Расстояние между A и B не указано, возьмем 1. 48 минут = 48/60 часов = 4/5 часов. Формула движения: S = v * t S- расстояние t - время y - скорость X - скорость велосипедиста. 4х - скорость мотоциклиста. 1 / x - время в пути велосипедиста. 1 / 4x - время мотоциклиста.1 / x = 1 / 4x TOTAL FRIEND 5 * 4x = 20x, перезаписать числа Дополнительные множители, избавиться от дробей: 20 * 1 = 5 * 1 + 4x * 4 20 = 5 + 16x 16x = 15 x = 15/16 ( км / час) - скорость велосипедиста. 15/16 * 4 = 15/4 (км / ч) - Скорость мотоциклиста. 1: 15/16 = 16/15 (час) - время в пути велосипедиста. В минутах: 16/15 * 60 = 64 (минуты). Чтобы узнать время мотоциклиста: 1: 15/4 = 4/15 (часы) = 16 (минуты). Вышло за 48 минут: 48 + 16 = 64 (минуты).64 = 64 Решение верное.
1)Ясно, что n = p и n = 2p при удовлетворяют условию, так как (n – 1)! не делится на p².
Легко видеть также, что 7! и 8! не могут делиться на 8² и 9² соответственно.
Докажем, что для остальных nчисло (n – 1)! делится на n². Пусть nимеет хотя бы два различных делителя. Среди чисел 1, ..., n – 1 есть хотя бы n/p – 1 число, кратное p. Если некоторое число p входит в разложения числа n в степени k, то n/p – 1 ≥ 2pk–1 – 1 ≥ 2k – 1 ≥ 2k – 1. Если n не имеет вид 2p, то хотя бы одно из написанных неравенств – строгое. Значит, n/p – 1 ≥ 2k и (n – 1)! делится на p2k. Поскольку это верно при всех p, то (n – 1)! делится на n².
Пусть теперь n = pk. Тогда n/p – 1 = pk–1 – 1. При p ≥ 5, либо p = 3 и k ≥ 3, либо p = 2 и k ≥ 5, это число не меньше 2k. Значит, (n – 1)! делится на n².
Случай n = 16 разбирается непосредственно.
Пошаговое объяснение:
Не забудь подписку и сердичку
Пошаговое объяснение:
64 мин. Из пункта А в пункт Б велосипедист вышел. Через 48 минут от точки А за ним поехал мотоциклист и прибыл в точку Б одновременно с велосипедистом. Сколько минут велосипедист находился в дороге, если известно, что его скорость в четыре раза меньше скорости мотоциклиста. Расстояние между A и B не указано, возьмем 1. 48 минут = 48/60 часов = 4/5 часов. Формула движения: S = v * t S- расстояние t - время y - скорость X - скорость велосипедиста. 4х - скорость мотоциклиста. 1 / x - время в пути велосипедиста. 1 / 4x - время мотоциклиста.1 / x = 1 / 4x TOTAL FRIEND 5 * 4x = 20x, перезаписать числа Дополнительные множители, избавиться от дробей: 20 * 1 = 5 * 1 + 4x * 4 20 = 5 + 16x 16x = 15 x = 15/16 ( км / час) - скорость велосипедиста. 15/16 * 4 = 15/4 (км / ч) - Скорость мотоциклиста. 1: 15/16 = 16/15 (час) - время в пути велосипедиста. В минутах: 16/15 * 60 = 64 (минуты). Чтобы узнать время мотоциклиста: 1: 15/4 = 4/15 (часы) = 16 (минуты). Вышло за 48 минут: 48 + 16 = 64 (минуты).64 = 64 Решение верное.