Рассмотрим все фигуры, которые можно разрезать на 6 квадратов со стороной 1 см, т.е. фигуры, составленные из 6 квадратов со стороной 1см так, что совпадают вершины соединяемых сторон. Чему равна разность нибольшого и наименьшого значений периметров этих фигур?
2/5x (две пятых икс) отлили в первый раз
x-2/5x=3/5x вёдер осталось
3/5x*1/3x=1/5x отлили во второй раз
3/5x-1/5x=2/5x осталось
2/5x=8 вёдер
x=8*5/2=20
Т.е. было 20 вёдер воды
Ну, тут объяснять-то нечего, если честно. Начальное количество вёдер мы берём за икс. Следовательно, в первый раз отлили две пятых от всего количества, т.е. две пятых икс. Далее вычислим то, сколько вёдер осталось после первой процедуры: от общего количества отнимаем две пятых, т.е. x-2/5x и получаем 3/5x. Это оставшаяся часть вёдер после первой манипуляции. Далее мы высчитываем треть от трёх пятых, т.е. от оставшегося количества: 1/3х*3/5х и получаем одну пятую икс. Это количество вёдер отлили во второй раз. Теперь от трёх пятых икс (количества вёдер, оставшихся после первого выливания) отнимем одну пятую икс и получим две пятых икс. Две пятых икс равны 8 вёдрам. Далее найдём икс: x=8:2/5=8*5/2=20