1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.
ответ:
пошаговое объяснение:
1). iv - ; xii - 22; xix - 19; xxxiit - это не римская цифра (т-? ); xli - 41; xcv - 95; lxxvii - 77
2). 3 -iii; 7 - vii; 12 -xii; 14 - xiv; 25 - xxv; 37 - xxxvii; 42 - xlii; 53 - liii; 66 - lxvi; 89 - lxxxix; 105 - cv; 110 - cx; 151 - cli
200 - cc; 239 - ccxxxix; 318 - ; 402 - cdii; 515 - dxv; 1200 - mcc; 2563 - mmdlxiii; 3022 - mmmxx
3). xi + v = xvi
xx - ii = xliii
il tv - это не римская цифра (т-? );
cci + iii = cciv
xxxv 4 ix (арабскую цифру 4 переведем в римскую iv):
xxxv iv ix = mcclx
ci vii = dccvii
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.
ответ:
пошаговое объяснение:
1). iv - ; xii - 22; xix - 19; xxxiit - это не римская цифра (т-? ); xli - 41; xcv - 95; lxxvii - 77
2). 3 -iii; 7 - vii; 12 -xii; 14 - xiv; 25 - xxv; 37 - xxxvii; 42 - xlii; 53 - liii; 66 - lxvi; 89 - lxxxix; 105 - cv; 110 - cx; 151 - cli
200 - cc; 239 - ccxxxix; 318 - ; 402 - cdii; 515 - dxv; 1200 - mcc; 2563 - mmdlxiii; 3022 - mmmxx
3). xi + v = xvi
xx - ii = xliii
il tv - это не римская цифра (т-? );
cci + iii = cciv
xxxv 4 ix (арабскую цифру 4 переведем в римскую iv):
xxxv iv ix = mcclx
ci vii = dccvii