Есть два варианта расчета количества комбинаций кодового замка по количеству его цифр. Если имеется линейная зависимость – например, замок чемодана или пин-код карточки – то число сочетаний равно N=K*K*K, то есть 1000 комбинаций, все число в промежутке 1-999 и тысячное число 000.
Если же в кодовом замке каждая цифра в каждой комбинации может использоваться лишь один раз, причем порядок цифр значения не имеет, то наборы (123 132 213 231 312 321), а также (345 354 435 453 534 543), (379 397 739 793 937 973) – всего лишь три разные комбинации. Простой перебор показывает, что комбинаций в этом случае всего 120.
трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.
Есть два варианта расчета количества комбинаций кодового замка по количеству его цифр. Если имеется линейная зависимость – например, замок чемодана или пин-код карточки – то число сочетаний равно N=K*K*K, то есть 1000 комбинаций, все число в промежутке 1-999 и тысячное число 000.
Если же в кодовом замке каждая цифра в каждой комбинации может использоваться лишь один раз, причем порядок цифр значения не имеет, то наборы (123 132 213 231 312 321), а также (345 354 435 453 534 543), (379 397 739 793 937 973) – всего лишь три разные комбинации. Простой перебор показывает, что комбинаций в этом случае всего 120.
Пошаговое объяснение: