Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
1. Производительность труда бригады - часть всего объема работ, выполняемая бригадой за один день.
2. Обозначим весь объем работ через P.
3. Тогда производительность труда первой бригады Q1 = P / 24.
4. Производительность труда второй бригады Q2 = P / 16.
5. Вторая бригада, работая четыре дня, выполнит часть P1 от всего объема работ, равную:
P1 = 4 * P / 16 = P / 4.
6. Тогда первой бригаде останется объем работ P2, равный: P2 = P - P1 = P - P / 4 = 3 * P / 4.
7. Время T, которое потребуется первой бригаде на выполнение этого объема работ, равно:
T = P2 / Q1 = (3 * P / 4) / (P / 24) = 3 * 24 / 4 = 18.
ответ: первая бригада закончит работу за 18 дней.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
1. Производительность труда бригады - часть всего объема работ, выполняемая бригадой за один день.
2. Обозначим весь объем работ через P.
3. Тогда производительность труда первой бригады Q1 = P / 24.
4. Производительность труда второй бригады Q2 = P / 16.
5. Вторая бригада, работая четыре дня, выполнит часть P1 от всего объема работ, равную:
P1 = 4 * P / 16 = P / 4.
6. Тогда первой бригаде останется объем работ P2, равный: P2 = P - P1 = P - P / 4 = 3 * P / 4.
7. Время T, которое потребуется первой бригаде на выполнение этого объема работ, равно:
T = P2 / Q1 = (3 * P / 4) / (P / 24) = 3 * 24 / 4 = 18.
ответ: первая бригада закончит работу за 18 дней.