РАБОТА В ГРУППЕ 5 Выполни задания. а) Начерти квадраты, периметр которых равны 24 мм; 48 ММ; 20 см; 12 см. 6) Начерти прямоугольник, длина которого равна 5 см, а пе- риметр равен 14 см. Найди площадь этого прямоугольника. Рим уже написано в тетради
1) Произведения корней одинаковой степени равно корню произведения. Запишем число в виде степени с основанием 5.
2) Сократим числа на наибольший общий делитель 8.
3) Умножим числа.
4) Упростим корень.
5) Умножим дробь на 5/5 (для умножения двух дробей нужно умножить числитель и знаменатель отдельно). Произведение корней одинаковой степени равно корню произведения.
6) Запишем число в виде степени с основанием 5. Вычислим произведение.
7) Сократим степень корня и показателя степени на 2. После на 4.
Альтернативный вид первого выражения = 0,89 = 0,9.
Решение для второго:
1) Избавимся от иррациональности в знаменателе.
2) Запишем повторяющееся умножения в показательной форме.
3) Используя (a-b)^2=a^2-2ab+b^2, запишем выражение в развернутом виде.
4) Складываем. Вынесем за скобки общий множитель 2.
5) Сократим дробь на 2.
6) Поскольку сумма двух противоположных величин равно нулю, убираем их. Складываем остаток.
Решение для третьего:
1) Представим смешанную дробь в виде неправильной дроби.
M+N+K:
2x⁴+x³y-3x²y²+4xy³-y⁴-3x⁴+2x³y+5x²y²+y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴=-2y⁴+8xy³+2x³y=2y(-y³+4xy²+x³)
M-N+K:
2x⁴+x³y-3x²y²+4xy³-y⁴-(-3x⁴+2x³y+5x²y²+y⁴)+x⁴-x³y-2x²y²+4xy³-2y⁴=2x⁴+x³y-3x²y²+4xy³-y⁴+3x⁴-2x³y-5x²y²-y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴=4x⁴-2x³y-10x²y²+8xy³-4y⁴
M-N-K:
2x⁴+x³y-3x²y²+4xy³-y⁴-(-3x⁴+2x³y+5x²y+y⁴)-(x⁴-x³y-2x²y²+4xy³-2y⁴)=2x⁴+x³y-3x²y²+4xy³-y⁴+3x⁴-2x³y-5x²y²-y⁴-x⁴+x³y+2x²y²-4xy³+2y⁴=4x⁴-2x³y-6x²y²
- M+N+K:
-(2x⁴+x³y-3x²y²+4xy³-y⁴)-3x⁴+2x³y+5x²y²+y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴=-2x⁴-x³y+3x²y²-4xy³+y⁴-3x⁴+2x³y+5x²y²+y⁴+x⁴-x³y-2x²y²+4xy³-2y⁴= -4x⁴+6x²y²
Действия:
1) Произведения корней одинаковой степени равно корню произведения. Запишем число в виде степени с основанием 5.
2) Сократим числа на наибольший общий делитель 8.
3) Умножим числа.
4) Упростим корень.
5) Умножим дробь на 5/5 (для умножения двух дробей нужно умножить числитель и знаменатель отдельно). Произведение корней одинаковой степени равно корню произведения.
6) Запишем число в виде степени с основанием 5. Вычислим произведение.
7) Сократим степень корня и показателя степени на 2. После на 4.
Альтернативный вид первого выражения = 0,89 = 0,9.
Решение для второго:
1) Избавимся от иррациональности в знаменателе.
2) Запишем повторяющееся умножения в показательной форме.
3) Используя (a-b)^2=a^2-2ab+b^2, запишем выражение в развернутом виде.
4) Складываем. Вынесем за скобки общий множитель 2.
5) Сократим дробь на 2.
6) Поскольку сумма двух противоположных величин равно нулю, убираем их. Складываем остаток.
Решение для третьего:
1) Представим смешанную дробь в виде неправильной дроби.
2) Упростим выражение.
3) Вычислим произведение.
Пошаговое объяснение: