Пусть точки Р и О - основания перпендикуляров, опущенных из вершины В треугольника АВС на биссектрисы углов ВАС и ВСА соответственно, а точки М и N - середины сторон АВ и ВС. Доказать, что длина ломаной PMNQ равна половине периметра треугольника АBC
Подкоренное выражение не должно быть меньше нуля и х не может быть равным нулю
Решим уравнение
Очевидно, что надо решить верхнюю часть (нижнее дает нам ограничение что х не может быть равен 0)
То есть решение х=-1
Проверим участок до -1, возьмем к примеру х=-2 (-2+1)/(-2)=0,5 >0 То есть этот участок годен.
Теперь возьмем значение со второго участка х>0, например х=1: (1+1) /1=2 >0 Тоже годен Остался участок от -1 до 0Возьмем к примеру -0,5 (-0,5+1)/(-0,5)=0,5/(-0,5)=-1 То есть участок не годен. И помним что
Подкоренное выражение не должно быть меньше нуля и х не может быть равным нулю
Решим уравнение
Очевидно, что надо решить верхнюю часть (нижнее дает нам ограничение что х не может быть равен 0)
То есть решение х=-1
Проверим участок до -1, возьмем к примеру х=-2
(-2+1)/(-2)=0,5 >0
То есть этот участок годен.
Теперь возьмем значение со второго участка х>0, например х=1:
(1+1) /1=2 >0
Тоже годен
Остался участок от -1 до 0Возьмем к примеру -0,5
(-0,5+1)/(-0,5)=0,5/(-0,5)=-1
То есть участок не годен. И помним что
1 см³ - 100 мм³ = 1.000 мм³ - 100 мм³ = 900 мм³ = 0,9 см³
1 дм³ - 200 см³ = 1 дм³ - 0,2 дм³ = 0,8 дм³
100 м² + 2 га = 100 м² + 20.000 м² = 20.100 м²
800 а : 2 = 400 а
1 000 см³ - 1 дм³ = 1.000 см³ - 1.000 см³ = 0 см³
400 м² : 4 = 100 м²
200 дм³ + 100 м³ = 200 дм³ + 100.000 дм³ = 100.200 дм³
10 см³ + 1.000 см³ = 1.010 см³
5 м³ : 100 дм³ = 5.000 дм³ : 100 дм³ = 50 дм³ = 0,05 м³
500 м³ + 100 дм³ = 500.000 дм³ + 100 дм³ = 500.100 дм³ = 500,1 м³
5 м³ + 100 дм³ = 5.000 дм³ + 100 дм³ = 5.100 дм³ = 5,1 м³
50 м² + 100 дм² = 5.000 дм² + 100 дм² = 5.100 дм² = 50,1 м²