При указанных начальных условиях, найти три первых, отличных от 0, члена разложения в степенной ряд функции, являющейся решением диф.уравнения: y`=3x²+2y³; y(0)=4
Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:
Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.
Найдем вероятность того, что будут выиграны три партии из шести:
Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.
Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести
Відповідь:
Решение задачи:
Играют равносильные шахматисты, поэтому вероятность выигрыша р = 1/2; следовательно, вероятность проигрыша q также равна 1/2. Так как во всех партиях вероятность выигрыша постоянна и безразлично, в какой последовательности будут выиграны партии, то применима формула Бернулли. Найдем вероятность того, что две партии из четырех будут выиграны:
Р4 (2)=C42p2q2 = 4*3/(1*2)*(1/2)2(1/2)2 = 6/16.
Найдем вероятность того, что будут выиграны три партии из шести:
Р6(3)=C63p3q3 = 6*5*4/(1*2*3)*(1/2)3(1/2)3=5/16.
Так как Р4(2)> Р6(3), то вероятнее выиграть две партии из четырех, чем три из шести
Покрокове пояснення:
1) 1/15 и 1/5 * 3 = 3/15; 1/15 & 3/15
2) 2/3 * 4 = 8/12 и 3/4 * 3 = 9/12; 8/12 & 9/12 ( знаменатели взаимно-простые, поэтому просто перемножили )
3) 1/2 * 7 = 7/14 и 3/7 * 2 = 6/14; 7/14 & 6/14 ( знаменатели взаимно-простые, поэтому просто перемножили )
4) 3/5 * 6 = 18/30 и 5/6 * 5 = 25/30; 18/30 & 25/30 ( знаменатели взаимно-простые, поэтому просто перемножили )
5) 4/15 * 11 = 44/165 и 7/11 * 15 = 105/165; 44/165 & 105/165 ( эти знаменатели тоже взаимно-простые, поэтому просто перемножили )
Пошаговое объяснение:
Я смог