В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Rr0
Rr0
08.05.2022 20:56 •  Математика

При каком значении параметра a прямая y=ax+1 является касательной к графику функции y=2-lnx

Показать ответ
Ответ:
Арчи171
Арчи171
31.12.2020 01:34

Угловой коэффициент касательной к графику функции равен производной функции в точке касания.

Производная функции y=2-lnx  равна -1/x.

Значит, уравнение касательной имеет вид y = (-1/x)*x+ 1 или y = 0.

В точке касания координаты кривой и прямой равны.

Приравняем: 2 - lnx  = 0, отсюда x = e².

Точка касания  В = (e²; 0).

Известна точка прямой на оси Оу - это свободный член уравнения прямой, то есть у = 1 при х = 0.

По двум точкам находим угловой коэффициент касательной.

k = Δy/Δx  = (0 - 1)/(e² - 0) = -1/e².

ответ: а = -1/e².


При каком значении параметра a прямая y=ax+1 является касательной к графику функции y=2-lnx​
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота