Скорость поезда 50 км/ч и в пути, до момента когда его догнал вертолёт, он был (12 + х) ч, а следовательно он проехал 50*(12 + х) км, что составило половину всего пути. Вертолёт летел со скоростью в 7 раз больше, чем скорость поезда: 7 * 50 = 350 км/ч и в пути был х ч, пролетев 350х км. Так как вертолёт догнал поезд приравняем пройденные пути: 600 + 50х = 350х 350х - 50х = 600 300х = 600 х = 600 : 300 х = 2 ч -в пути был вертолёт А значит он пролетел 2 * 350 = 700 км, что составляет половину пути. Значит весь путь 700 * 2 = 1400 км. ответ: 1 400 км
Вертолёт летел со скоростью в 7 раз больше, чем скорость поезда: 7 * 50 = 350 км/ч и в пути был х ч, пролетев 350х км.
Так как вертолёт догнал поезд приравняем пройденные пути: 600 + 50х = 350х
350х - 50х = 600
300х = 600
х = 600 : 300
х = 2 ч -в пути был вертолёт
А значит он пролетел 2 * 350 = 700 км, что составляет половину пути. Значит весь путь 700 * 2 = 1400 км.
ответ: 1 400 км
ΔАВС подобен ΔСАН по трём углам соответственно
1) <АСВ = <СНА = 90° по условию
2) <ВАС = <САН - общий
3) <АВС = <АСН как равные разности при равных вычитаемых
90° - <ВАС = 90° - <САН
Из равенства углов <АВС = <АСН следует, что синусы их тоже равны
Найдём sin<АСН из ΔАСН
sin<АСН = АН/АС
АС = 24 - по условию
По теореме Пифагора найдём АН
АН² + СН² = АС²
АН² = АС² - СН²
АН² =24² - (6√15)² = 576 - 540 = 36
АН = √36 = 6
sin<СВН = 6/24 = 1/4 = 0,25
sin<АВС = sin<СВН = 0,25
ответ: sin<АВС =0,25