Надо налить молоко в 5-литровый кувшин, из 5 перелить в 7-лит Затем ещё раз налить в 5-лит. и из него долить в 7-лит. 2 литра молока. На этом этапе мы имеем: в 12лит. - 2л. 5лит. - 3л. 7лит. -7л. Теперь из 7лит. -7л. переливаем в 12лит и получаем 9л. А из 5лит. - 3л. выливаем в 7лит. имеем: в 12лит. 9л. 5лит. -пусто 7лит. -3л. Далее переливаем из 12лит. в 5лит. -5л. , а из 5лит. в 7лит. может поместится только 4 литра молока т. к. в 7лит. уже есть3л. , следовательно в 5лит. кувшине остался 1 литр
Мощность каждого из этих двух множеств равна 4, так как в каждом из них ровно 4 элемента:
В пересечение множеств попадают элементы, которые содержатся в каждом из пересекаемых множеств. В данном случае таких нет. Значит пересечение - множество пустое и его мощность равна нулю:
В объединение множеств попадают элементы, которые содержатся хотя бы в одном из объединяемых множеств. Объединение имеет вид:
Так как в объединении содержится 8 элементов, то его мощность равна 8:
Симметрическая разность представляет собой множество элементов, которые содержались только в одном из исходных множеств. Так как иных элементов не было (пересечение - пустое множество), то в данном случае симметрическая разность совпадет с объединением и ее мощность равна 8:
Декартово произведение представляет собой множество упорядоченных пар , где , . Мощность декартова произведения равна произведению мощностей перемножаемых множеств.
Элементом а может оказаться любой из 4 элементов множества А, аналогично, элементом b может оказаться любой из 4 элементов множества В. Тогда, общее число пар равно 16, следовательно, мощность декартова произведения равна 16.
Мощность каждого из этих двух множеств равна 4, так как в каждом из них ровно 4 элемента:
В пересечение множеств попадают элементы, которые содержатся в каждом из пересекаемых множеств. В данном случае таких нет. Значит пересечение - множество пустое и его мощность равна нулю:
В объединение множеств попадают элементы, которые содержатся хотя бы в одном из объединяемых множеств. Объединение имеет вид:
Так как в объединении содержится 8 элементов, то его мощность равна 8:
Симметрическая разность представляет собой множество элементов, которые содержались только в одном из исходных множеств. Так как иных элементов не было (пересечение - пустое множество), то в данном случае симметрическая разность совпадет с объединением и ее мощность равна 8:
Декартово произведение представляет собой множество упорядоченных пар , где , . Мощность декартова произведения равна произведению мощностей перемножаемых множеств.
Элементом а может оказаться любой из 4 элементов множества А, аналогично, элементом b может оказаться любой из 4 элементов множества В. Тогда, общее число пар равно 16, следовательно, мощность декартова произведения равна 16.