а теперь подумаем, что будет при взятии целой части числа.
вот, допустим, f(x)=1 без взятия целой части, при , тогда при любом , но при взятии целой части будет 1. далее, при некотором , f(x)=2.
но при любом
при идет прямая, в точка не выколота, а вот в где f(x)=1 выколота, а вот где f(x)=2 не выколота.
и так далее.
при f(x)< 0 все симметрично наоборот
на рисунке я постарался отметить все, что нужно. синяя прямая - исходная прямая графика y=2x+3.4, а вот черные кусочки - нужный график вместо с выколотыми точками.
пунктирами, по факту, отмечены разрывы функции. это перпендикуляры
ответ:
пошаговое объяснение:
сначала построим график f(x)=2x+3.4
а теперь подумаем, что будет при взятии целой части числа.
вот, допустим, f(x)=1 без взятия целой части, при , тогда при любом , но при взятии целой части будет 1. далее, при некотором , f(x)=2.
но при любом
при идет прямая, в точка не выколота, а вот в где f(x)=1 выколота, а вот где f(x)=2 не выколота.
и так далее.
при f(x)< 0 все симметрично наоборот
на рисунке я постарался отметить все, что нужно. синяя прямая - исходная прямая графика y=2x+3.4, а вот черные кусочки - нужный график вместо с выколотыми точками.
пунктирами, по факту, отмечены разрывы функции. это перпендикуляры