Дано координати точок A (1; -5; 0) i B (3, 2; -4), та рівняння площини
2x-y+2z-3=0.
Знайти:
а) записати рівняння прямої яка проходить через точки А і В.
Вектор АВ = (3-1; 2-(-5); -4-0) = (2; 7; -4).
Уравнение прямой АВ: (x - 1)/2 = (y + 5)/7 = z/(-4).
б) визначити координати точки перетину прямої АВ із площиною.
Уравнение прямой АВ: (x - 1)/2 = (y + 5)/7 = z/(-4) представим в параметрическом виде:
АВ: (x - 1)/2 = (y + 5)/7 = z/(-4) = t.
x = 2t + 1,
y = 7t - 5,
z= -4t.
Подставим эти значения переменных в уравнение плоскости.
2(2t + 1) -1*(7t - 5) + 2*(-4t) - 3 = 0.
4t + 2 - 7t + 5 - 8t - 3 = 0
-11t = -4, t = -4/11.
Теперь можно определить координаты точки пересечения прямой АВ с заданной плоскостью, подставив значение t в параметрические координаты переменных.
x = 2*(4/11) + 1 = 19/11,
y = 7*(4/11) - 5 = -27/11,
z= -4*(4/11) = -16/11.
в) записати рівняння примої яка проходить через точку А перпендикулярно до площини.
В уравнении плоскости 2x-y+2z-3=0 коэффициенты при переменных - это координаты нормального вектора n = (2; -1; 2).
Для перпендикуляра это будет направляющий вектор.
Уравнение перпендикуляра из точки А на заданную плоскость:
(x - 1)/2 = (y + 5)/(-1) = z/2.
1) a-b=-3 - разность отрицательная. значит a<b
a=-3+b
a=b-3
a < b
2) a - b = 2/7 - разность положительная. значит a>b
a=2/7+b
a=b+2/7
a > b
3) a - b=0 - разность = 0. значит a=b
a=0+b
a=b
4) a - b= -0.5 - разность отрицательная, значит a<b
a=-0.5+b
a=b-0.5
5) b-a=1 - разность положительная, значит b>a
b=1+a
b=a+1
b > a
6) b - a=-0.99 - разность отрицательная. значит b<a
b=-0.99+a
b=a-0.99
b < a
Дано координати точок A (1; -5; 0) i B (3, 2; -4), та рівняння площини
2x-y+2z-3=0.
Знайти:
а) записати рівняння прямої яка проходить через точки А і В.
Вектор АВ = (3-1; 2-(-5); -4-0) = (2; 7; -4).
Уравнение прямой АВ: (x - 1)/2 = (y + 5)/7 = z/(-4).
б) визначити координати точки перетину прямої АВ із площиною.
Уравнение прямой АВ: (x - 1)/2 = (y + 5)/7 = z/(-4) представим в параметрическом виде:
АВ: (x - 1)/2 = (y + 5)/7 = z/(-4) = t.
x = 2t + 1,
y = 7t - 5,
z= -4t.
Подставим эти значения переменных в уравнение плоскости.
2(2t + 1) -1*(7t - 5) + 2*(-4t) - 3 = 0.
4t + 2 - 7t + 5 - 8t - 3 = 0
-11t = -4, t = -4/11.
Теперь можно определить координаты точки пересечения прямой АВ с заданной плоскостью, подставив значение t в параметрические координаты переменных.
x = 2*(4/11) + 1 = 19/11,
y = 7*(4/11) - 5 = -27/11,
z= -4*(4/11) = -16/11.
в) записати рівняння примої яка проходить через точку А перпендикулярно до площини.
В уравнении плоскости 2x-y+2z-3=0 коэффициенты при переменных - это координаты нормального вектора n = (2; -1; 2).
Для перпендикуляра это будет направляющий вектор.
Уравнение перпендикуляра из точки А на заданную плоскость:
(x - 1)/2 = (y + 5)/(-1) = z/2.
1) a-b=-3 - разность отрицательная. значит a<b
a=-3+b
a=b-3
a < b
2) a - b = 2/7 - разность положительная. значит a>b
a=2/7+b
a=b+2/7
a > b
3) a - b=0 - разность = 0. значит a=b
a=0+b
a=b
4) a - b= -0.5 - разность отрицательная, значит a<b
a=-0.5+b
a=b-0.5
a < b
5) b-a=1 - разность положительная, значит b>a
b=1+a
b=a+1
b > a
6) b - a=-0.99 - разность отрицательная. значит b<a
b=-0.99+a
b=a-0.99
b < a