Показать, что сумма квадратов отрезков, отсекаемых на осях координат плоскостью, касательной к поверхности ж2/3 + + у2/3 + z2i3 = а2/3, равна постоянной величине а2.
1) 154-38=116 была бы сумма , если бы второе число было бы равно третьему. Теперь получается, что первое число в 2 раза больше и второго и третьего числа. Первое число- 2 части второе и третье число - по одной части. Всего 4 части. 116:4= 29 - третье число, то 29+38= 67- второе число, а первое 29*2=58 Проверка 58+67+29=154. ответ 67=втрое число 2) на первом станке изготовлено 2 части деталей, а на втором одну часть деталей 2-1=1 (ч) разница в частях. Значит, одна часть составляет 18 деталей.- изготовили на втором станке, то на первом 18*2=36 деталей изготовили на первом станке ответ: 36 деталей
Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
2) на первом станке изготовлено 2 части деталей, а на втором одну часть деталей 2-1=1 (ч) разница в частях. Значит, одна часть составляет 18 деталей.- изготовили на втором станке, то на первом 18*2=36 деталей изготовили на первом станке ответ: 36 деталей
Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:
ПРИМЕР №1. В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:
X 1 2 3 4
P 0,4 0,3 0,2 0,1
НайдемF(x):
Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2)2 · 0,4 + (2-2)2 · 0,3 +(3-2)2 · 0,2 + (4-2)2 · 0,1 = 1
Пошаговое объяснение: