Подарок упакован в коробку, которая имеет форму прямоугольного параллелепипеда.
Длина двух сторон грани основания — 9 см и 14 см, длина бокового ребра коробки — 13 см.
Определи необходимую длину ленты для упаковки, если на завязывание банта уйдёт 32 см ленты.
ответ: всего необходимо
см ленты.
Годом будем считать промежуток с начала ИЮНЯ текущего календарного года по конец ИЮЛЯ следующего календарного года. Таким образом, в начале 16-го года его долг составит 0 млн. рублей.
1й год:
июль - A,
январь - A(1+x/100)
2й год:
июль - (A-q), заплатил A(1+x/100) - (A-q) = A(x/100)+q
январь - (A-q)(1+x/100)
3й год:
июль - (A-2q), заплатил (A-q)(1+x/100) - (A-2q) = (A-q)(x/100)+q
январь - (A-2q)(1+x/100)
...
15й год:
июль - (A-14q), заплатил (A-13q)(1+x/100) - (A-14q) = (A-13q)(x/100)+q
январь - (A-14q)(1+x/100)
16й год:
июль - отдал последние гроши из своего бедного кармана, остаток долга - (A-15q) = 0, заплатил (A-14q)(1+x/100) - (A-15q) = (A-14q)(x/100)+q.
Очевидно, что с каждым годом ему платить приходилось все меньше и меньше.На втором году заплатил A(x/100)+q, а на 16-м: (A-14q)(x/100)+q.
Теперь смотрим на условия задачи.
1) A(x/100)+q <=1.9
2) (A-14q)(x/100)+q >= 0.5
3) A = 6
4) (A-15q) = 0, откуда q = A/15.
Объединим все, что есть:
a) q = 6/15=0.4
б) 6(x/100)+0.4 <= 1.9
x/100<=0.25
x<=25
в) (6-14*0.4)(x/100)+0.4 >= 0.5
0.4(x/100)>=0.1
x>=25.
Таким образом, получили уже упрощенную систему неравенств для x: x<=25 и x>=25, единственным решением которой является x=25.
ответ:
в 6 примере (увидела в коментах что он нужен) решение ниже↓ а посчитать можо на
пошаговое объяснение: надо: заменить деление другим действием но сначала: 265-238=27 надо поставить на место х другое число и другое действие(-+: и так далее) что-бы получилось 27.
ответ: х : 8 заменяем 19+8=27. и пишем : 238+27=265.