Побудуйте тупий кут АМВ і позначте на його стороні точку D. Проведіть через точку D пряму, яка: а) стороні МВ; б) стороні МА. Виконайте відповідні записи.
Квадратное уравнение имеет два корня тогда, когда его дискриминант больше нуля.
Найдем дискриминанты для каждого трёхчлена:
1) 4a^2 - 4b>0
2) 4a'^(2)-4b'>0
3) 4a''^(2)-4b''>0
Если произведение нечётного числа чисел больше нуля, то хотя бы один из них положительный, либо все три положительные.
Т.к. произведения равны, можем сказать, что её члены равны, но не известно в какой последовательности.
Допустим, что b<b'<b'', если наоборот, то всё равно будет также, но будет другой трёхчлен
Для начала предположим, что a=b, a'=b', a''=b'', тогда так как коэффициенты перед ними одинаковы, а а в квадрате, то получаем, что дискриминант каждого больше нуля, т.к. а больше b.
Теперь предположим, что a=b', a'=b, a''=b''
Теперь в первом случае а меньше b, и трёхчлен не будет иметь двух корней, но уже во втором случае a' больше b, тогда будет два корня, данное утверждение справедливо для всех перестановок
Пошаговое объяснение:
Квадратное уравнение имеет два корня тогда, когда его дискриминант больше нуля.
Найдем дискриминанты для каждого трёхчлена:
1) 4a^2 - 4b>0
2) 4a'^(2)-4b'>0
3) 4a''^(2)-4b''>0
Если произведение нечётного числа чисел больше нуля, то хотя бы один из них положительный, либо все три положительные.
Т.к. произведения равны, можем сказать, что её члены равны, но не известно в какой последовательности.
Допустим, что b<b'<b'', если наоборот, то всё равно будет также, но будет другой трёхчлен
Для начала предположим, что a=b, a'=b', a''=b'', тогда так как коэффициенты перед ними одинаковы, а а в квадрате, то получаем, что дискриминант каждого больше нуля, т.к. а больше b.
Теперь предположим, что a=b', a'=b, a''=b''
Теперь в первом случае а меньше b, и трёхчлен не будет иметь двух корней, но уже во втором случае a' больше b, тогда будет два корня, данное утверждение справедливо для всех перестановок
Все модели делим на три группы A9, B9 и C9 по 9.
1-взвешивание. Взвешиваем A9 и B9. Если A9<B9, то лёгкая модель в A9. Если A9>B9, то лёгкая модель в B9. Если A9=B9, то лёгкая модель в C9.
Берем группу с лёгкой моделью и делим её на три группы A3, B3 и C3 по 3.
2-взвешивание. Взвешиваем A3 и B3. Если A3<B3, то лёгкая модель в A3. Если A3>B3, то лёгкая модель в B3. Если A3=B3, то лёгкая модель в C3.
Берем группу с лёгкой моделью и делим её на три группы A1, B1 и C1 по 1.
3-взвешивание. Взвешиваем A1 и B1. Если A1<B1, то лёгкая модель A1. Если A1>B1, то лёгкая модель B1. Если A1=B1, то лёгкая модель C1.