Нужно найти отношение (то есть поделить) общего числа бросков к числу попаданий для каждого баскетболиста и сравнить их. Проделаем это: I баскетболист Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: . II баскетболист Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово. Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
Область определения логарифма - это положительные значения х, то есть нужно решить неравенство (6х+х^2) больше нуля (неравенство 1) x(6+x) больше нуля решаем методом интервалов, находим нули функции, это точки 0 и (-6) отмечаем их на коорд прямой получаем три интервала 1) от минус беск до (-6) 2) от (-6) до 0 3) от 0 до плюс беск выбираем из каждого промежутка любое значение, подставляем в (неравенство 1) получаем, что обл опред этой функции явл промежуток (от минус беск до (-6)) знак объединения (от 0 до плюс беск)
I баскетболист
Сделал 8 бросков, попал 3 раза, отсюда отношение общего числа бросков к числу попаданий имеет вид: .
II баскетболист
Сделал 15 бросков, 6 из которых были удачными, найдем отсюда долю попаданий от общего числа бросков: . Готово.
Определим теперь, результат какого баскетболиста лучше. Для этого необходимо сравнить дроби. Чтобы сравнить дроби, приведем их к общему знаменателю, получается: и , где числитель дроби — общее число бросков, а ее знаменатель — число попаданий. Видно, что при одинаковом числе попаданий, второй баскетболист совершил меньше бросков, а значит и его результат лучше.
(6х+х^2) больше нуля (неравенство 1)
x(6+x) больше нуля
решаем методом интервалов, находим нули функции, это точки 0 и (-6)
отмечаем их на коорд прямой
получаем три интервала
1) от минус беск до (-6)
2) от (-6) до 0
3) от 0 до плюс беск
выбираем из каждого промежутка любое значение, подставляем в (неравенство 1)
получаем, что обл опред этой функции явл промежуток (от минус беск до (-6)) знак объединения (от 0 до плюс беск)