В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
альбина346
альбина346
21.09.2021 05:40 •  Математика

По аксонометрической проекции предмета постройте чертеж в необходимом количестве видов опора сталь

Показать ответ
Ответ:
алиса673
алиса673
11.01.2021 08:13
2015-2014+2013-2012+2011-2010+2009-...+3-2+1


1.
Вычисляем сумму всех положительных членов арифметической прогрессии, которых всего 1008 чисел
(2015 + 1) * 1008/2 = 1016064
2.
Вычисляем сумму всех отрицательных членов арифметической прогрессии, которых всего 1007 чисел
(-2014 - 2) * 1007/2 =  - 1015056
3.
Вычисляем искомую сумму всех чисел  данного выражения
 1016064 - 1015056 = 1008
ответ: 1008


Разбиваем на пары, где каждая пара равна 1.
(2015-2014) + (2013-2012) + (2011-2010) + (2009-1008) +...+(3-2) + 1 = 
= 1 + 1 + 1 + 1 + ... + 1 + 1 = 1 * (2015 - 1)/2 + 1 = 1 * 1007 + 1 = 1008
0,0(0 оценок)
Ответ:
Луи3а
Луи3а
18.03.2021 23:49
Решение делим на две части:
I. доказываем монотонный прирост и ограниченность
II. находим предел последовательности

Часть I:
монотонность доказываем по индукции:
Проверка: x_2=\sqrt{3\frac{3}{2}-2}=\sqrt{\frac{5}{2}}\ \textgreater \ \frac{3}{2}=x_1\ \Rightarrow x_2\ \textgreater \ x_1
Предполагаем справедливость неравенства для любого k\ \textless \ n+1
Доказываем для x_{n+1}:
x_{n+1}=\sqrt{3x_n-2}\ \textgreater \ \sqrt{3x_{n-1}-2}=x_n\ \Rightarrow x_{n+1}\ \textgreater \ x_n
Монотонный прирост доказан.

Ограниченность сверху:
x_n\ \textless \ 2\ \Rightarrow 3x_n\ \textless \ 6\ \Rightarrow3x_n-2\ \textless \ 4\ \Rightarrow\sqrt{3x_n-2}\ \textless \ 2\ \Rightarrow x_{n+1}\ \textless \ 2

Условие выполняется для x_1, по индукции получаем справедливость для любого x_n.
(x_{n+1}:=\sqrt{...}\ \Rightarrow x_{n+1}\geq 0, потому можно извлечь корень)
(*) Последовательность монотонна и ограниченна, следовательно сходится к супремуму.

Часть II.
Определим l:=\sup\{x_n\}_{n\in\mathbb{N}}. Из (*) следует:
\lim_{n\to\infty}x_n=l, но для больших n\in\mathbb{N} выполняется |x_{n+1}-x_n|\ \textless \ \epsilon (Коши), следовательно \lim_{n\to\infty}x_{n+1}=l
Подставялем в рекурсию и получаем:
\sqrt{3l-2}=l\ \Rightarrow l^2-3l+2=0\ \Rightarrow l_{1,2}\in\{1,2\}
Из монотонности и x_1=\frac{3}{2} следует l\neq 1.
Получаем: l=2

\lim_{n\to\infty}x_n=2

(**) Как я "угадал" верхний предел для доказательства ограниченности в первой части?
- Сначала решил часть II, и выбрал подходящее значение.
Важно помнить: без части I, часть II не имеет сысла!! Потому доказательство нужно предоставлять именно в таком порядке и в полном объёме.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота